| Clinical Epigenetics | |
| Transgelin gene is frequently downregulated by promoter DNA hypermethylation in breast cancer | |
| Isik G. Yulug1  Onder Bozdogan2  Betul Bozkurt3  Ozlen Konu1  Gurbet Karahan1  Nilufer Sayar1  | |
| [1] Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, Ankara, TR-06800, Turkey;Department of Pathology, Ankara Numune Training and Research Hospital, Ankara, 06100, Turkey;Department of General Surgery, Ankara Numune Training and Research Hospital, Ankara, 06100, Turkey | |
| 关键词: Diagnosis; Prognosis; SM22 alpha; TAGLN; Breast cancer; Hypermethylation; DNA methylation; | |
| Others : 1230684 DOI : 10.1186/s13148-015-0138-5 |
|
| received in 2015-07-26, accepted in 2015-09-18, 发布年份 2015 | |
【 摘 要 】
Background
CpG hypermethylation in gene promoters is a frequent mechanism of tumor suppressor gene silencing in various types of cancers. It usually occurs at early steps of cancer progression and can be detected easily, giving rise to development of promising biomarkers for both detection and progression of cancer, including breast cancer. 5-aza-2′-deoxycytidine (AZA) is a DNA demethylating and anti-cancer agent resulting in induction of genes suppressed via DNA hypermethylation.
Results
Using microarray expression profiling of AZA- or DMSO-treated breast cancer and non-tumorigenic breast (NTB) cells, we identified for the first time TAGLN gene as a target of DNA hypermethylation in breast cancer. TAGLN expression was significantly and frequently downregulated via promoter DNA hypermethylation in breast cancer cells compared to NTB cells, and also in 13/21 (61.9 %) of breast tumors compared to matched normal tissues. Analyses of public microarray methylation data showed that TAGLN was also hypermethylated in 63.02 % of tumors compared to normal tissues; relapse-free survival of patients was worse with higher TAGLN methylation; and methylation levels could discriminate between tumors and healthy tissues with 83.14 % sensitivity and 100 % specificity. Additionally, qRT-PCR and immunohistochemistry experiments showed that TAGLN expression was significantly downregulated in two more independent sets of breast tumors compared to normal tissues and was lower in tumors with poor prognosis. Colony formation was increased in TAGLN silenced NTB cells, while decreased in overexpressing BC cells.
Conclusions
TAGLN gene is frequently downregulated by DNA hypermethylation, and TAGLN promoter methylation profiles could serve as a future diagnostic biomarker, with possible clinical impact regarding the prognosis in breast cancer.
【 授权许可】
2015 Sayar et al.
| Files | Size | Format | View |
|---|---|---|---|
| Fig. 6. | 79KB | Image | |
| Fig. 5. | 131KB | Image | |
| Fig. 4. | 37KB | Image | |
| Fig. 3. | 50KB | Image | |
| Fig. 2. | 89KB | Image | |
| Fig. 1. | 125KB | Image | |
| Fig. 6. | 79KB | Image | |
| Fig. 5. | 131KB | Image | |
| Fig. 4. | 37KB | Image | |
| Fig. 3. | 50KB | Image | |
| Fig. 2. | 89KB | Image | |
| Fig. 1. | 125KB | Image |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
【 参考文献 】
- [1]Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al.: Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 2007, 13(15 Pt 1):4429-34.
- [2]Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al.: Molecular portraits of human breast tumours. Nature 2000, 406(6797):747-52.
- [3]Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al.: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001, 98(19):10869-74.
- [4]Herman JG, Baylin SB: Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003, 349(21):2042-54.
- [5]Esteller M: Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 2007, 8(4):286-98.
- [6]Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000, 100(1):57-70.
- [7]Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG: Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 2001, 10(7):687-92.
- [8]Dworkin AM, Huang TH, Toland AE: Epigenetic alterations in the breast: implications for breast cancer detection, prognosis and treatment. Semin Cancer Biol 2009, 19(3):165-71.
- [9]Qiu X, Hother C, Ralfkiaer UM, Sogaard A, Lu Q, Workman CT, et al.: Equitoxic doses of 5-azacytidine and 5-aza-2'deoxycytidine induce diverse immediate and overlapping heritable changes in the transcriptome. PLoS One 2010, 5:9.
- [10]Momparler RL, Cote S, Momparler LF, Idaghdour Y: Epigenetic therapy of acute myeloid leukemia using 5-aza-2'-deoxycytidine (decitabine) in combination with inhibitors of histone methylation and deacetylation. Clin Epigenetics 2014, 6(1):19. BioMed Central Full Text
- [11]Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M, Weijenberg MP, et al.: A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 2002, 31(2):141-9.
- [12]Kristiansen S, Jorgensen LM, Guldberg P, Soletormos G: Aberrantly methylated DNA as a biomarker in breast cancer. Int J Biol Markers 2013, 28(2):141-50.
- [13]Mulero-Navarro S, Esteller M: Epigenetic biomarkers for human cancer: the time is now. Crit Rev Oncol Hematol 2008, 68(1):1-11.
- [14]Radpour R, Barekati Z, Kohler C, Lv Q, Burki N, Diesch C, et al.: Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer. PLoS One 2011., 6(1) Article ID e16080
- [15]Laird PW: The power and the promise of DNA methylation markers. Nat Rev Cancer 2003, 3(4):253-66.
- [16]Prinjha RK, Shapland CE, Hsuan JJ, Totty NF, Mason IJ, Lawson D: Cloning and sequencing of cDNAs encoding the actin cross-linking protein transgelin defines a new family of actin-associated proteins. Cell Motil Cytoskeleton 1994, 28(3):243-55.
- [17]Shapland C, Lowings P, Lawson D: Identification of new actin-associated polypeptides that are modified by viral transformation and changes in cell shape. J Cell Biol 1988, 107(1):153-61.
- [18]Camoretti-Mercado B, Forsythe SM, LeBeau MM, Espinosa R 3rd, Vieira JE, Halayko AJ, et al.: Expression and cytogenetic localization of the human SM22 gene (TAGLN). Genomics 1998, 49(3):452-7.
- [19]Lees-Miller JP, Heeley DH, Smillie LB: An abundant and novel protein of 22 kDa (SM22) is widely distributed in smooth muscles. Purification from bovine aorta. Biochem J 1987, 244(3):705-9.
- [20]Almendral JM, Santaren JF, Perera J, Zerial M, Bravo R: Expression, cloning and cDNA sequence of a fibroblast serum-regulated gene encoding a putative actin-associated protein (p27). Exp Cell Res 1989, 181(2):518-30.
- [21]Schenker T, Trueb B: Down-regulated proteins of mesenchymal tumor cells. Exp Cell Res 1998, 239(1):161-8.
- [22]Shields JM, Rogers-Graham K, Der CJ: Loss of transgelin in breast and colon tumors and in RIE-1 cells by Ras deregulation of gene expression through Raf-independent pathways. J Biol Chem 2002, 277(12):9790-9.
- [23]Prasad PD, Stanton JA, Assinder SJ: Expression of the actin-associated protein transgelin (SM22) is decreased in prostate cancer. Cell Tissue Res 2010, 339(2):337-47.
- [24]Wulfkuhle JD, Sgroi DC, Krutzsch H, McLean K, McGarvey K, Knowlton M, et al.: Proteomics of human breast ductal carcinoma in situ. Cancer Res 2002, 62(22):6740-9.
- [25]Thweatt R, Lumpkin CK Jr, Goldstein S: A novel gene encoding a smooth muscle protein is overexpressed in senescent human fibroblasts. Biochem Biophys Res Commun 1992, 187(1):1-7.
- [26]Gonos ES, Derventzi A, Kveiborg M, Agiostratidou G, Kassem M, Clark BF, et al.: Cloning and identification of genes that associate with mammalian replicative senescence. Exp Cell Res 1998, 240(1):66-74.
- [27]Dumont P, Burton M, Chen QM, Gonos ES, Frippiat C, Mazarati JB, et al.: Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic Biol Med 2000, 28(3):361-73.
- [28]Marshall CB, Krofft RD, Blonski MJ, Kowalewska J, Logar CM, Pippin JW, et al.: Role of smooth muscle protein SM22alpha in glomerular epithelial cell injury. Am J Physiol Renal Physiol 2011, 300(4):F1026-42.
- [29]Zhang ZW, Yang ZM, Zheng YC, Chen ZD: Transgelin induces apoptosis of human prostate LNCaP cells through its interaction with p53. Asian J Androl 2010, 12(2):186-95.
- [30]Nair RR, Solway J, Boyd DD: Expression cloning identifies transgelin (SM22) as a novel repressor of 92-kDa type IV collagenase (MMP-9) expression. J Biol Chem 2006, 281(36):26424-36.
- [31]Kalhori V, Tornquist K: MMP2 and MMP9 participate in S1P-induced invasion of follicular ML-1 thyroid cancer cells. Mol Cell Endocrinol 2015, 404:113-22.
- [32]Yeo M, Park HJ, Kim DK, Kim YB, Cheong JY, Lee KJ, et al.: Loss of SM22 is a characteristic signature of colon carcinogenesis and its restoration suppresses colon tumorigenicity in vivo and in vitro. Cancer 2010, 116(11):2581-9.
- [33]Li N, Zhang J, Liang Y, Shao J, Peng F, Sun M, et al.: A controversial tumor marker: is SM22 a proper biomarker for gastric cancer cells? J Proteome Res 2007, 6(8):3304-12.
- [34]Lin Y, Buckhaults PJ, Lee JR, Xiong H, Farrell C, Podolsky RH, et al.: Association of the actin-binding protein transgelin with lymph node metastasis in human colorectal cancer. Neoplasia 2009, 11(9):864-73.
- [35]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
- [36]da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37(1):1-13.
- [37]Dedeurwaerder S, Desmedt C, Calonne E, Singhal SK, Haibe-Kains B, Defrance M, et al.: DNA methylation profiling reveals a predominant immune component in breast cancers. EMBO Mol Med 2011, 3(12):726-41.
- [38]Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al.: ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004, 6(1):1-6.
- [39]Yamamura H, Masuda H, Ikeda W, Tokuyama T, Takagi M, Shibata N, et al.: Structure and expression of the human SM22alpha gene, assignment of the gene to chromosome 11, and repression of the promoter activity by cytosine DNA methylation. J Biochem 1997, 122(1):157-67.
- [40]O’Leary P, Penny SA, Dolan RT, Kelly CM, Madden SF, Rexhepaj E, et al.: Systematic antibody generation and validation via tissue microarray technology leading to identification of a novel protein prognostic panel in breast cancer. BMC Cancer 2013, 13:175. BioMed Central Full Text
- [41]Fackler MJ, Umbricht CB, Williams D, Argani P, Cruz LA, Merino VF, et al.: Genome-wide methylation analysis identifies genes specific to breast cancer hormone receptor status and risk of recurrence. Cancer Res 2011, 71(19):6195-207.
- [42]Network CGA: Comprehensive molecular portraits of human breast tumours. Nature 2012, 490(7418):61-70.
- [43]Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al.: An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 2010, 123(3):725-31.
- [44]Yao TT, Mo SM, Liu LY, Lu HW, Huang ML, Lin ZQ: 5-Aza-2'-deoxycytidine may influence the proliferation and apoptosis of cervical cancer cells via demethylation in a dose- and time-dependent manner. Genet Mol Res 2013, 12(1):312-8.
- [45]Gomyo Y, Sasaki J, Branch C, Roth JA, Mukhopadhyay T: 5-aza-2'-deoxycytidine upregulates caspase-9 expression cooperating with p53-induced apoptosis in human lung cancer cells. Oncogene 2004, 23(40):6779-87.
- [46]Zhu WG, Hileman T, Ke Y, Wang P, Lu S, Duan W, et al.: 5-aza-2'-deoxycytidine activates the p53/p21Waf1/Cip1 pathway to inhibit cell proliferation. J Biol Chem 2004, 279(15):15161-6.
- [47]Hackanson B, Daskalakis M: Decitabine. Recent Results Cancer Res 2014, 201:269-97.
- [48]Hirasawa Y, Arai M, Imazeki F, Tada M, Mikata R, Fukai K, et al.: Methylation status of genes upregulated by demethylating agent 5-aza-2'-deoxycytidine in hepatocellular carcinoma. Oncology 2006, 71(1–2):77-85.
- [49]Zhao L, Wang H, Deng YJ, Wang S, Liu C, Jin H, et al.: Transgelin as a suppressor is associated with poor prognosis in colorectal carcinoma patients. Mod Pathol 2009, 22(6):786-96.
- [50]Murria R, Palanca S, de Juan I, Egoavil C, Alenda C, Garcia-Casado Z, et al.: Methylation of tumor suppressor genes is related with copy number aberrations in breast cancer. Am J Cancer Res 2015, 5(1):375-85.
- [51]Gormally E, Caboux E, Vineis P, Hainaut P: Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance. Mutat Res 2007, 635(2–3):105-17.
- [52]Jeronimo C, Costa I, Martins MC, Monteiro P, Lisboa S, Palmeira C, et al.: Detection of gene promoter hypermethylation in fine needle washings from breast lesions. Clin Cancer Res 2003, 9(9):3413-7.
- [53]Krassenstein R, Sauter E, Dulaimi E, Battagli C, Ehya H, Klein-Szanto A, et al.: Detection of breast cancer in nipple aspirate fluid by CpG island hypermethylation. Clin Cancer Res 2004, 10(1 Pt 1):28-32.
- [54]Antill YC, Mitchell G, Johnson SA, Devereux L, Milner A, Di Iulio J, et al.: Gene methylation in breast ductal fluid from BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol Biomarkers Prev 2010, 19(1):265-74.
- [55]Van De Voorde L, Speeckaert R, Van Gestel D, Bracke M, De Neve W, Delanghe J, et al.: DNA methylation-based biomarkers in serum of patients with breast cancer. Mutat Res 2012, 751(2):304-25.
- [56]Shukla S, Mirza S, Sharma G, Parshad R, Gupta SD, Ralhan R: Detection of RASSF1A and RARbeta hypermethylation in serum DNA from breast cancer patients. Epigenetics 2006, 1(2):88-93.
- [57]Kim JH, Shin MH, Kweon SS, Park MH, Yoon JH, Lee JS, et al.: Evaluation of promoter hypermethylation detection in serum as a diagnostic tool for breast carcinoma in Korean women. Gynecol Oncol 2010, 118(2):176-81.
- [58]Naito S, Pippin JW, Shankland SJ: The glomerular parietal epithelial cell's responses are influenced by SM22 alpha levels. BMC Nephrol 2014, 15:174. BioMed Central Full Text
- [59]Groger CJ, Grubinger M, Waldhor T, Vierlinger K, Mikulits W: Meta-analysis of gene expression signatures defining the epithelial to mesenchymal transition during cancer progression. PLoS One 2012., 7(12) Article ID e51136
- [60]Thompson O, Moghraby JS, Ayscough KR, Winder SJ: Depletion of the actin bundling protein SM22/transgelin increases actin dynamics and enhances the tumourigenic phenotypes of cells. BMC Cell Biol 2012, 13:1. BioMed Central Full Text
- [61]Pang J, Liu WP, Liu XP, Li LY, Fang YQ, Sun QP, et al.: Profiling protein markers associated with lymph node metastasis in prostate cancer by DIGE-based proteomics analysis. J Proteome Res 2010, 9(1):216-26.
- [62]Park GH, Lee SJ, Yim H, Han JH, Kim HJ, Sohn YB, et al.: TAGLN expression is upregulated in NF1-associated malignant peripheral nerve sheath tumors by hypomethylation in its promoter and subpromoter regions. Oncol Rep 2014, 32(4):1347-54.
- [63]Mikuriya K, Kuramitsu Y, Ryozawa S, Fujimoto M, Mori S, Oka M, et al.: Expression of glycolytic enzymes is increased in pancreatic cancerous tissues as evidenced by proteomic profiling by two-dimensional electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry. Int J Oncol 2007, 30(4):849-55.
- [64]Klade CS, Voss T, Krystek E, Ahorn H, Zatloukal K, Pummer K, et al.: Identification of tumor antigens in renal cell carcinoma by serological proteome analysis. Proteomics 2001, 1(7):890-8.
- [65]Rho JH, Roehrl MH, Wang JY: Tissue proteomics reveals differential and compartment-specific expression of the homologs transgelin and transgelin-2 in lung adenocarcinoma and its stroma. J Proteome Res 2009, 8(12):5610-8.
- [66]Assinder SJ, Stanton JA, Prasad PD: Transgelin: an actin-binding protein and tumour suppressor. Int J Biochem Cell Biol 2009, 41(3):482-6.
- [67]Yang Z, Chang YJ, Miyamoto H, Ni J, Niu Y, Chen Z, et al.: Transgelin functions as a suppressor via inhibition of ARA54-enhanced androgen receptor transactivation and prostate cancer cell growth. Mol Endocrinol 2007, 21(2):343-58.
- [68]Ryu JW, Kim HJ, Lee YS, Myong NH, Hwang CH, Lee GS, et al.: The proteomics approach to find biomarkers in gastric cancer. J Korean Med Sci 2003, 18(4):505-9.
- [69]Yu B, Chen X, Li J, Qu Y, Su L, Peng Y, et al.: Stromal fibroblasts in the microenvironment of gastric carcinomas promote tumor metastasis via upregulating TAGLN expression. BMC Cell Biol 2013, 14:17. BioMed Central Full Text
- [70]Shapland C, Hsuan JJ, Totty NF, Lawson D: Purification and properties of transgelin: a transformation and shape change sensitive actin-gelling protein. J Cell Biol 1993, 121(5):1065-73.
- [71]Hall A: The cytoskeleton and cancer. Cancer Metastasis Rev 2009, 28(1–2):5-14.
- [72]Shen J, Yang M, Ju D, Jiang H, Zheng JP, Xu Z, et al.: Disruption of SM22 promotes inflammation after artery injury via nuclear factor kappaB activation. Circ Res 2010, 106(8):1351-62.
- [73]Gimona M, Kaverina I, Resch GP, Vignal E, Burgstaller G: Calponin repeats regulate actin filament stability and formation of podosomes in smooth muscle cells. Mol Biol Cell 2003, 14(6):2482-91.
- [74]Gourlay CW, Carpp LN, Timpson P, Winder SJ, Ayscough KR: A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol 2004, 164(6):803-9.
- [75]Kato Y, Salumbides BC, Wang XF, Qian DZ, Williams S, Wei Y, et al.: Antitumor effect of the histone deacetylase inhibitor LAQ824 in combination with 13-cis-retinoic acid in human malignant melanoma. Mol Cancer Ther 2007, 6(1):70-81.
- [76]Zhang R, Zhou L, Li Q, Liu J, Yao W, Wan H: Up-regulation of two actin-associated proteins prompts pulmonary artery smooth muscle cell migration under hypoxia. Am J Respir Cell Mol Biol 2009, 41(4):467-75.
- [77]Kaverina I, Stradal TE, Gimona M: Podosome formation in cultured A7r5 vascular smooth muscle cells requires Arp2/3-dependent de-novo actin polymerization at discrete microdomains. J Cell Sci 2003, 116(Pt 24):4915-24.
- [78]Yu H, Konigshoff M, Jayachandran A, Handley D, Seeger W, Kaminski N, et al.: Transgelin is a direct target of TGF-beta/Smad3-dependent epithelial cell migration in lung fibrosis. FASEB J 2008, 22(6):1778-89.
- [79]Chunhua L, Donglan L, Xiuqiong F, Lihua Z, Qin F, Yawei L, et al.: Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT. J Nutr Biochem 2013, 24(10):1766-75.
- [80]Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL: Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 2012, 13:134. BioMed Central Full Text
- [81]Gur-Dedeoglu B, Konu O, Bozkurt B, Ergul G, Seckin S, Yulug IG: Identification of endogenous reference genes for qRT-PCR analysis in normal matched breast tumor tissues. Oncol Res 2009, 17(8):353-65.
- [82]Winer J, Jung CK, Shackel I, Williams PM: Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 1999, 270(1):41-9.
- [83]Kumaki Y, Oda M, Okano M: QUMA: quantification tool for methylation analysis. Nucleic Acids Res 2008, 36(Web Server issue):W170-5.
- [84]McCarty KS Jr, Szabo E, Flowers JL, Cox EB, Leight GS, Miller L, et al.: Use of a monoclonal anti-estrogen receptor antibody in the immunohistochemical evaluation of human tumors. Cancer Res 1986, 46(8):4244s-8s.
- [85]Mihaly Z, Kormos M, Lanczky A, Dank M, Budczies J, Szasz MA, et al.: A meta-analysis of gene expression-based biomarkers predicting outcome after tamoxifen treatment in breast cancer. Breast Cancer Res Treat 2013, 140(2):219-32.