期刊论文详细信息
International Journal of Health Geographics
Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool
Andrew J Tatem2  Youliang Qiu1  Anirrudha Das1  Zhuojie Huang1 
[1] Emerging Pathogen Institute, University of Florida, Gainesville, FL, USA;Fogarty International Center, National Institutes of Health, Bethesda, USA
关键词: Mosquito;    Chikungunya;    Yellow fever;    Dengue;    Malaria;    Web GIS;    Imported disease;    Air transport network;    Infectious disease;   
Others  :  810936
DOI  :  10.1186/1476-072X-11-33
 received in 2012-05-11, accepted in 2012-08-08,  发布年份 2012
PDF
【 摘 要 】

Background

Over the past century, the size and complexity of the air travel network has increased dramatically. Nowadays, there are 29.6 million scheduled flights per year and around 2.7 billion passengers are transported annually. The rapid expansion of the network increasingly connects regions of endemic vector-borne disease with the rest of the world, resulting in challenges to health systems worldwide in terms of vector-borne pathogen importation and disease vector invasion events. Here we describe the development of a user-friendly Web-based GIS tool: the Vector-Borne Disease Airline Importation Risk Tool (VBD-AIR), to help better define the roles of airports and airlines in the transmission and spread of vector-borne diseases.

Methods

Spatial datasets on modeled global disease and vector distributions, as well as climatic and air network traffic data were assembled. These were combined to derive relative risk metrics via air travel for imported infections, imported vectors and onward transmission, and incorporated into a three-tier server architecture in a Model-View-Controller framework with distributed GIS components. A user-friendly web-portal was built that enables dynamic querying of the spatial databases to provide relevant information.

Results

The VBD-AIR tool constructed enables the user to explore the interrelationships among modeled global distributions of vector-borne infectious diseases (malaria. dengue, yellow fever and chikungunya) and international air service routes to quantify seasonally changing risks of vector and vector-borne disease importation and spread by air travel, forming an evidence base to help plan mitigation strategies. The VBD-AIR tool is available at http://www.vbd-air.com webcite.

Conclusions

VBD-AIR supports a data flow that generates analytical results from disparate but complementary datasets into an organized cartographical presentation on a web map for the assessment of vector-borne disease movements on the air travel network. The framework built provides a flexible and robust informatics infrastructure by separating the modules of functionality through an ontological model for vector-borne disease. The VBD‒AIR tool is designed as an evidence base for visualizing the risks of vector-borne disease by air travel for a wide range of users, including planners and decisions makers based in state and local government, and in particular, those at international and domestic airports tasked with planning for health risks and allocating limited resources.

【 授权许可】

   
2012 Huang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709054238558.pdf 1372KB PDF download
Figure 5 . 149KB Image download
Figure 4 . 51KB Image download
Figure 3 . 49KB Image download
Figure 2 . 128KB Image download
Figure 1 . 188KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

Figure 3 .

Figure 4 .

Figure 5 .

【 参考文献 】
  • [1]IATA Singapore: Annual Report 2011 International Air Transport Association; 2011. http://www.iata.org/pressroom/Documents/annual-report-2011.pdf webcite
  • [2]World Health Organization: The world health report 2007: a safer future: global public health security in the 21st century. Switzerland: WHO Press; 2007.
  • [3]Tatem AJ, Huang Z, Das A, Qi Q, Qiu Y: Air travel and vector-borne disease movement. Parasitology 2012, 1-15. In press
  • [4]Tatem AJ, Hay SI, Rogers DJ: Global traffic and disease vector dispersal. Proc Natl Acad Sci USA 2006, 103(16):6242-6247.
  • [5]Randolph SE, Rogers DJ: The arrival, establishment and spread of exotic diseases: patterns and predictions. Nat Rev Microbiol 2010, 8(5):361-371.
  • [6]Haggett P: The geographical structure of epidemics. Oxford: Clarendon; 2000.
  • [7]Colizza V, Barrat A, Barthélemy M, Vespignani A: The role of the airline transportation network in the prediction and predictability of global epidemics. Proc Natl Acad Sci USA 2006, 103(7):2015-2020.
  • [8]Colizza V, Barrat A, Barthelemy M: Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLoS Med 2007, 4(1):e13.
  • [9]Flávio C, Oswaldo C, Cláudia C: Epigrass: a tool to study disease spread in complex networks. Source Code Biol Med 2008, 3:3. BioMed Central Full Text
  • [10]Tatem AJ, Rogers DJ, Hay SI: Global transport networks and infectious disease spread. Adv Parasit 2006, 62:293-343.
  • [11]Freedman DO, Weld LH, Kozarsky PE, Fisk T, Robins R, von Sonnenburg F, Keystone JS, Pandey P, Cetron MS: Spectrum of disease and relation to place of exposure among Ill returned travelers. N Engl J Med 2006, 354(2):119-130.
  • [12]Lounibos LP: Invasions by insect vectors of human disease. Annu Rev Entomol 2002, 47(1):233-266.
  • [13]Tatem AJ, Hay SI: Climatic similarity and biological exchange in the worldwide airline transportation network. Proc R Soc B 2007, 274:1489-1496.
  • [14]Laird M: Commerce and the spread of pests and disease vectors. New York: Praeger; 1984.
  • [15]Russell R: Survival of insects in the wheel bays of a Boeing 747B aircraft on flights between tropical and temperate airports. Bull. W.H.O 1987, 65(5)):659.
  • [16]Franco-Paredes C, Santos-Preciado JI: Problem pathogens: prevention of malaria in travellers. Lancet Infect Dis 2006, 6(3):139-149.
  • [17]Svihrova V, Szilagyiova M, Novakova E, Svihra J, Hudeckova H: Costs analysis of the treatment of imported malaria. Malaria J 2012, 11(1):1. BioMed Central Full Text
  • [18]Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IRF, Johnston GL, Tatem AJ, Hay SI: A new world malaria map: Plasmodium falciparum endemicity in 2010. Malaria Jl 2011, 10(1):378. BioMed Central Full Text
  • [19]Rogers D, Wilson A, Hay S, Graham A: The global distribution of yellow fever and dengue. Adv Parasit 2006, 62:181-220.
  • [20]Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, Gething PW, Elyazar IRF, Kabaria CW, Harbach RE: The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors 2011, 4(1):89. BioMed Central Full Text
  • [21]Sinka M, Bangs M, Manguin S, Coetzee M, Mbogo C, Hemingway J, Patil A, Temperley W, Gething P, Kabaria C, et al.: The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic precis. Parasit Vectors 2010, 3(1):117. BioMed Central Full Text
  • [22]Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, Van Boeckel T, Kabaria CW, Harbach RE, Hay SI: The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis. Parasit Vectors 2010, 3(1):72. BioMed Central Full Text
  • [23]Charrel RN, de Lamballerie X, Raoult D: Seasonality of mosquitoes and chikungunya in Italy. Lancet Infect Dis 2008, 8(1):5-6.
  • [24]Tatem AJ, Rogers DJ, Hay SI: Estimating the malaria risk of African mosquito movement by air travel. Malaria J 2006, 5:57. BioMed Central Full Text
  • [25]Guerra C, Gikandi PW, Tatem AJ, Noor AM, Smith DL, Hay SI, Snow RW: The limits and intensity of Plasmodium falciparum transmission: implications for malaria control and elimination worldwide. PLoS Med 2008, 5:e38.
  • [26]Guerra CA, Howes RE, Patil AP, Gething PW, Van Boeckel TP, Temperley WH, Kabaria CW, Tatem AJ, Manh BH, Elyazar IRF: The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis 2010, 4(8):e774.
  • [27]Whitehorn J, Farrar J: Dengue. Br Med Bull 2010, 95(1):161-173.
  • [28]Elith J, Leathwick J, Hastie T: A working guide to boosted regression trees. J Anim Ecol 2008, 77(4):802-813.
  • [29]Monath TP: Yellow fever: an update. Lancet Infect Dis 2001, 1(1):11-20.
  • [30]Powers AM, Logue CH: Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol 2007, 88(9):2363.
  • [31]Moffett A, Strutz S, Guda N, González C, Ferro MC, Sánchez-Cordero V, Sarkar S: A global public database of disease vector and reservoir distributions. PLoS Negl Trop Dis 2009, 3(3):e378.
  • [32]Foley D, Wilkerson R, Birney I, Harrison S, Christensen J, Rueda L: MosquitoMap and the Mal-area calculator: new web tools to relate mosquito species distribution with vector borne disease. Int J Health Geogr 2010, 9(1):11. BioMed Central Full Text
  • [33]Gratz N: Critical review of the vector status of Aedes albopictus. Med Vet Entomol 2004, 18(3):215-227.
  • [34]Benedict MQ, Levine RS, Hawley WA, Lounibos LP: Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector-borne Zoonot 2007, 7(1):76-85.
  • [35]Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, Mbogo CM, Hemmingway J, Patil AP, Temperley WH: A global map of dominant malaria vectors. Parasit Vectors 2012, 5(1):69. BioMed Central Full Text
  • [36]New M, Lister D, Hulme M, Makin I: A high-resolution data set of surface climate over global land areas. Climate Res 2002, 21(1):1-25.
  • [37]Budhathoki NR, Bruce BC, Nedovic-Budic Z: Reconceptualizing the role of the user of spatial data infrastructure. GeoJournal 2008, 72(3):149-160.
  • [38]Tatem AJ: The worldwide airline network and the dispersal of exotic species: 2007–2010. Ecography 2009, 32:94-102.
  • [39]Sanderson S: Pro ASP.NET MVC 2 Framework. New York City: Apres; 2010.
  • [40]Gamma E: Design patterns: elements of reusable object-oriented software. Boston: Addison-Wesley; 1995.
  • [41]Cockburn A: Agile software development: the cooperative game (agile software development series). Boston: Addison-Wesley Professional; 2006.
  • [42]Shneiderman B: The eyes have it: a task by data type taxonomy for information visualizations. Visual Languages, 1996. Proceedings., IEEE Symposium on: 3–6 Sep 1996 1996, 336-343.
  • [43]Johansson MA, Arana-Vizcarrondo N, Biggerstaff BJ, Staples JE, Gallagher N, Marano N: On the treatment of airline travelers in mathematical models. PLoS One 2011, 6:e22151.
  • [44]Patil AP, Gething PW, Piel FB, Hay SI: Bayesian geostatistics in health cartography: the perspective of malaria. Trends Parasitol 2011, 27(6):246-253.
  • [45]Brownstein JS, Freifeld CC, Reis BY, Mandl KD: Surveillance Sans Frontieres: Internet-based emerging infectious disease intelligence and the HealthMap project. PLoS Med 2008, 5(7):e151.
  • [46]Gardner LM, Fajardo D, Waller ST, Ophelia W, Sahotra S: A Predictive Spatial Model to Quantify the Risk of Air-Travel-Associated Dengue Importation into the United States and Europe. J Tropical Med 2012, 11. Article ID 103679
  • [47]Parker J, Epstein JM: A distributed platform for global-scale agent-based models of disease transmission. J ACM Trans. Model. Comput. Simul 2011, 22(1):2.
  • [48]Hwang GM, Mahoney PJ, James JH, Lin GC, Berro AD, Keybl MA, Goedecke DM, Mathieu JJ, Wilson T: A model-based tool to predict the propagation of infectious disease via airports. Travel Med Infect Dis 2012, 10(1):32-42.
  • [49]Johansson MA, Arana-Vizcarrondo N, Biggerstaff BJ, Gallagher N, Marano N, Staples JE: Assessing the risk of international spread of yellow fever virus: a mathematical analysis of an urban outbreak in asunción, 2008. Am J Trop Med Hyg 2012, 86(2):349-358.
  • [50]Wilson ME: Travel and the emergence of infectious diseases. Emerg Infect Dis 1995, 1(2):39-46.
  • [51]Wilson ME: The traveller and emerging infections: sentinel, courier, transmitter. J Appl Microbiol 2003, 94:1S-11S.
  文献评价指标  
  下载次数:22次 浏览次数:10次