期刊论文详细信息
Cardiovascular Diabetology
Diet-induced pre-diabetes slows cardiac conductance and promotes arrhythmogenesis
Morten Schak Nielsen6  Niels-Henrik Holstein-Rathlou6  Lars Bo Nielsen4  Thomas Jespersen6  Ulrik Baandrup5  Emil D. Bartels4  Kristine Boisen Olsen3  Christa Funch Jensen6  Bo Liang6  Johannes Pauli Hofgaard6  Mads Riemann6  Thomas Hartig Braunstein2  Kirstine Calloe1  Lene Nygaard Axelsen6 
[1] Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Copenhagen, Denmark;Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Core Facility for Integrated Microscopy, University of Copenhagen, Copenhagen, Denmark;Department of Forensic Medicine, Section of Forensic Pathology, University of Copenhagen, Copenhagen, Denmark;Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark;Centre for Clinical Research, Vendsyssel Hospital/Department of Clinical Medicine, Aalborg University, Aalborg, Denmark;Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Blegdamsvej 3B, Copenhagen N DK-2200, Denmark
关键词: Conduction velocity;    Gap junctions;    Arrhythmias;    Electrophysiology;    Diabetes;   
Others  :  1219967
DOI  :  10.1186/s12933-015-0246-8
 received in 2015-02-20, accepted in 2015-06-11,  发布年份 2015
PDF
【 摘 要 】

Background

Type 2 diabetes is associated with abnormal electrical conduction and sudden cardiac death, but the pathogenic mechanism remains unknown. This study describes electrophysiological alterations in a diet-induced pre-diabetic rat model and examines the underlying mechanism.

Methods

Sprague–Dawley rats were fed either high-fat diet and fructose water or normal chow and water for 6 weeks. The electrophysiological properties of the whole heart was analyzed by in vivo surface ECG recordings, as wells as ex vivo in Langendorff perfused hearts during baseline, ischemia and re-perfussion. Conduction velocity was examined in isolated tissue strips. Ion channel and gap junction conductances were analyzed by patch-clamp studies in isolated cardiomyocytes. Fibrosis was examined by Masson’s Trichrome staining and thin-layer chromatography was used to analyze cardiac lipid content. Connexin43 (Cx43) expression and distribution was examined by western blotting and immunofluorescence respectively.

Results

Following 6 weeks of feeding, fructose-fat fed rats (FFFRs) showed QRS prolongation compared to controls (16.1 ± 0.51 (n = 6) vs. 14.7 ± 0.32 ms (n = 4), p < 0.05). Conduction velocity was slowed in FFFRs vs. controls (0.62 ± 0.02 (n = 13) vs. 0.79 ± 0.06 m/s (n = 11), p < 0.05) and Langendorff perfused FFFR hearts were more prone to ventricular fibrillation during reperfusion following ischemia (p < 0.05). The patch-clamp studies revealed no changes in Na +or K +currents, cell capacitance or gap junctional coupling. Cx43 expression was also unaltered in FFFRs, but immunofluorescence demonstrated an increased fraction of Cx43 localized at the intercalated discs in FFFRs compared to controls (78 ± 3.3 (n = 5) vs. 60 ± 4.2 % (n = 6), p < 0.01). No fibrosis was detected but FFFRs showed a significant increase in cardiac triglyceride content (1.93 ± 0.19 (n = 12) vs. 0.77 ± 0.13 nmol/mg (n = 12), p < 0.0001).

Conclusion

Six weeks on a high fructose-fat diet cause electrophysiological changes, which leads to QRS prolongation, decreased conduction velocity and increased arrhythmogenesis during reperfusion. These alterations are not explained by altered gap junctional coupling, Na + , or K +currents, differences in cell size or fibrosis.

【 授权许可】

   
2015 Axelsen et al.

【 预 览 】
附件列表
Files Size Format View
20150720031414169.pdf 3331KB PDF download
Fig. 8. 169KB Image download
Fig. 7. 70KB Image download
Fig. 6. 14KB Image download
Fig. 5. 54KB Image download
Fig. 4. 30KB Image download
Fig. 3. 38KB Image download
Fig. 2. 9KB Image download
Fig. 1. 56KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Bergner DW, Goldberger JJ. Diabetes mellitus and sudden cardiac death: what are the data? Cardiol J. 2010; 17:117-29.
  • [2]Gami AS, Witt BJ, Howard DE, Erwin PJ, Gami LA, Somers VK et al.. Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J Am Coll Cardiol. 2007; 49:403-14.
  • [3]Voulgari C, Tentolouris N, Papadogiannis D, Moyssakis I, Perrea D, Kyriaki D et al.. Increased left ventricular arrhythmogenicity in metabolic syndrome and relationship with myocardial performance, risk factors for atherosclerosis, and low-grade inflammation. Metabolism. 2010; 59:159-65.
  • [4]Bakth S, Arena J, Lee W, Torres R, Haider B, Patel BC et al.. Arrhythmia susceptibility and myocardial composition in diabetes. Influence of physical conditioning. J Clin Invest. 1986; 77:382-95.
  • [5]Ghaly H, Boyle P, Vigmond E, Shimoni Y, Nygren A. Simulations of reduced conduction reserve in the diabetic rat heart: response to uncoupling and reduced excitability. Ann Biomed Eng. 2010; 38:1415-25.
  • [6]Nygren A, Olson ML, Chen KY, Emmett T, Kargacin G, Shimoni Y. Propagation of the cardiac impulse in the diabetic rat heart: reduced conduction reserve. J Physiol. 2007; 580:543-60.
  • [7]Lin H, Ogawa K, Imanaga I, Tribulova N. Remodeling of connexin 43 in the diabetic rat heart. Mol Cell Biochem. 2006; 290:69-78.
  • [8]Stilli D, Lagrasta C, Berni R, Bocchi L, Savi M, Delucchi F et al.. Preservation of ventricular performance at early stages of diabetic cardiomyopathy involves changes in myocyte size, number and intercellular coupling. Basic Res Cardiol. 2007; 102:488-99.
  • [9]Lin H, Mitasikova M, Dlugosova K, Okruhlicova L, Imanaga I, Ogawa K et al.. Thyroid hormones suppress epsilon-PKC signalling, down-regulate connexin-43 and increase lethal arrhythmia susceptibility in non-diabetic and diabetic rat hearts. J Physiol Pharmacol. 2008; 59:271-85.
  • [10]Apaijai N, Chinda K, Palee S, Chattipakorn S, Chattipakorn N. Combined vildagliptin and metformin exert better cardioprotection than monotherapy against ischemia-reperfusion injury in obese-insulin resistant rats. PLoS One. 2014; 9: Article ID e102374
  • [11]Olsen KB, Axelsen LN, Braunstein TH, Sorensen CM, Andersen CB, Ploug T et al.. Myocardial impulse propagation is impaired in right ventricular tissue of Zucker Diabetic Fatty (ZDF) rats. Cardiovasc Diabetol. 2013; 12:19. BioMed Central Full Text
  • [12]Axelsen LN, Lademann JB, Petersen JS, Holstein-Rathlou NH, Ploug T, Prats C et al.. Cardiac and metabolic changes in long-term high fructose-fat fed rats with severe obesity and extensive intramyocardial lipid accumulation. Am J Physiol Regul Integr Comp Physiol. 2010; 298:R1560-R1570.
  • [13]Huang BW, Chiang MT, Yao HT, Chiang W. The effect of high-fat and high-fructose diets on glucose tolerance and plasma lipid and leptin levels in rats. Diabetes Obes Metab. 2004; 6:120-6.
  • [14]Kmecova J, Klimas J. Heart rate correction of the QT duration in rats. Eur J Pharmacol. 2010; 641:187-92.
  • [15]Olsen KB, Braunstein TH, Sorensen CM, Axelsen LN, Holstein-Rathlou NH, Nielsen MS. Angiotensin II does not acutely regulate conduction velocity in rat atrial tissue. Scand J Clin Lab Invest. 2011; 71:492-9.
  • [16]Kjolbye AL, Knudsen CB, Jepsen T, Larsen BD, Petersen JS. Pharmacological characterization of the new stable antiarrhythmic peptide analog Ac-D-Tyr-D-Pro-D-Hyp-Gly-D-Ala-Gly-NH2 (ZP123): in vivo and in vitro studies. J Pharmacol Exp Ther. 2003; 306:1191-9.
  • [17]Curtis MJ, Hancox JC, Farkas A, Wainwright CL, Stables CL, Saint DA et al.. The Lambeth Conventions (II): guidelines for the study of animal and human ventricular and supraventricular arrhythmias. Pharmacol Ther. 2013; 139:213-48.
  • [18]Procida K, Jorgensen L, Schmitt N, Delmar M, Taffet SM, Holstein-Rathlou NH et al.. Phosphorylation of connexin43 on serine 306 regulates electrical coupling. Heart Rhythm. 2009; 6:1632-8.
  • [19]Bartels ED, Lauritsen M, Nielsen LB. Hepatic expression of microsomal triglyceride transfer protein and in vivo secretion of triglyceride-rich lipoproteins are increased in obese diabetic mice. Diabetes. 2002; 51:1233-9.
  • [20]Axelsen LN, Stahlhut M, Mohammed S, Larsen BD, Nielsen MS, Holstein-Rathlou NH et al.. Identification of ischemia-regulated phosphorylation sites in connexin43: A possible target for the antiarrhythmic peptide analogue rotigaptide (ZP123). J Mol Cell Cardiol. 2006; 40:790-8.
  • [21]Himmel HM, Wettwer E, Li Q, Ravens U. Four different components contribute to outward current in rat ventricular myocytes. Am J Physiol. 1999; 277:H107-H118.
  • [22]Grubb S, Speerschneider T, Occhipinti D, Fiset C, Olesen SP, Thomsen MB et al.. Loss of K+ currents in heart failure is accentuated in KChIP2 deficient mice. J Cardiovasc Electrophysiol. 2014; 25:896-904.
  • [23]Torres-Jacome J, Gallego M, Rodriguez-Robledo JM, Sanchez-Chapula JA, Casis O. Improvement of the metabolic status recovers cardiac potassium channel synthesis in experimental diabetes. Acta Physiol (Oxf). 2013; 207:447-59.
  • [24]Siscovick D, Sotoodehnia N, Rea T, Raghunathan T, Jouven X, Lemaitre R. Type 2 diabetes mellitus and the risk of sudden cardiac arrest in the community. Rev Endocr Metab Disord. 2010; 11:53-9.
  • [25]Veglio M, Bruno G, Borra M, Macchia G, Bargero G, D’Errico N et al.. Prevalence of increased QT interval duration and dispersion in type 2 diabetic patients and its relationship with coronary heart disease: a population-based cohort. J Intern Med. 2002; 251:317-24.
  • [26]Ramirez AH, Schildcrout JS, Blakemore DL, Masys DR, Pulley JM, Basford MA et al.. Modulators of normal electrocardiographic intervals identified in a large electronic medical record. Heart Rhythm. 2011; 8:271-7.
  • [27]Huang H, Amin V, Gurin M, Wan E, Thorp E, Homma S et al.. Diet-induced obesity causes long QT and reduces transcription of voltage-gated potassium channels. J Mol Cell Cardiol. 2013; 59:151-8.
  • [28]VanHoose L, Sawers Y, Loganathan R, Vacek JL, Stehno-Bittel L, Novikova L et al.. Electrocardiographic changes with the onset of diabetes and the impact of aerobic exercise training in the Zucker Diabetic Fatty (ZDF) rat. Cardiovasc Diabetol. 2010; 9:56. BioMed Central Full Text
  • [29]Howarth FC, Jacobson M, Shafiullah M, Adeghate E. Long-term effects of type 2 diabetes mellitus on heart rhythm in the Goto-Kakizaki rat. Exp Physiol. 2008; 93:362-9.
  • [30]Yang Q, Kiyoshige K, Fujimoto T, Katayama M, Fujino K, Saito K et al.. Signal-averaging electrocardiogram in patients with diabetes mellitus. Jpn Heart J. 1990; 31:25-33.
  • [31]Huisamen B, Genis A, Marais E, Lochner A. Pre-treatment with a DPP-4 inhibitor is infarct sparing in hearts from obese, pre-diabetic rats. Cardiovasc Drugs Ther. 2011; 25:13-20.
  • [32]Howarth FC, Chandler NJ, Kharche S, Tellez JO, Greener ID, Yamanushi TT et al.. Effects of streptozotocin-induced diabetes on connexin43 mRNA and protein expression in ventricular muscle. Mol Cell Biochem. 2008; 319:105-14.
  • [33]Axelsen LN, Calloe K, Holstein-Rathlou NH, Nielsen MS. Managing the complexity of communication: regulation of gap junctions by post-translational modification. Front Pharmacol. 2013; 4:130.
  • [34]Stables CL, Musa H, Mitra A, Bhushal S, Deo M, Guerrero-Serna G et al.. Reduced Na(+) current density underlies impaired propagation in the diabetic rabbit ventricle. J Mol Cell Cardiol. 2014; 69:24-31.
  • [35]Gallego M, Alday A, Urrutia J, Casis O. Transient outward potassium channel regulation in healthy and diabetic hearts. Can J Physiol Pharmacol. 2009; 87:77-83.
  • [36]de Jong S, van Veen TA, van Rijen HV, de Bakker JM. Fibrosis and cardiac arrhythmias. J Cardiovasc Pharmacol. 2011; 57:630-8.
  • [37]van de Weijer T, Schrauwen-Hinderling VB, Schrauwen P. Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc Res. 2011; 92:10-8.
  • [38]Elezaby A, Sverdlov AL, Tu VH, Soni K, Luptak I, Qin F et al.. Mitochondrial remodeling in mice with cardiomyocyte-specific lipid overload. J Mol Cell Cardiol. 2015; 79:275-83.
  • [39]Soltysinska E, Speerschneider T, Winther SV, Thomsen MB. Sinoatrial node dysfunction induces cardiac arrhythmias in diabetic mice. Cardiovasc Diabetol. 2014; 13:122. BioMed Central Full Text
  文献评价指标  
  下载次数:58次 浏览次数:9次