期刊论文详细信息
Journal of Neuroinflammation
Cu(II) enhances the effect of Alzheimer’s amyloid-β peptide on microglial activation
Juan Li1  Hongzhuan Chen1  Xiaoling Gao1  Yongyao Cui1  Yu Qiu1  Zhuqin Hu2  Ping Gong1  Fengxiang Yu1 
[1]Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
[2]Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
关键词: NF-кB;    Nitric oxide;    Tumor necrosis factor-α;    Reactive oxygen species;    Microglia;    Aggregation;    Cu(II)-Aβ complex;   
Others  :  1221949
DOI  :  10.1186/s12974-015-0343-3
 received in 2014-12-26, accepted in 2015-06-12,  发布年份 2015
PDF
【 摘 要 】

Background

Aggregated forms of amyloid-β (Aβ) peptides are important triggers for microglial activation, which is an important pathological component in the brains of Alzheimer’s patients. Cu(II) ions are reported to be coordinated to monomeric Aβ, drive Aβ aggregation, and potentiate Aβ neurotoxicity. Here we investigated whether Cu(II) binding modulates the effect of Aβ on microglial activation and the subsequent neurotoxicity.

Methods

Aβ peptides were incubated with Cu(II) at an equimolar ratio to obtain the Cu(II)-Aβ complex. Primary and BV-2 microglial cells were treated with Cu(II)-Aβ, Aβ, or Cu(II). The tumor necrosis factor-α (TNF-α) and nitric oxide levels in the media were determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was detected by MitoSOX oxidation.

Results

Incubation of Cu(II) with Aβ confers different chemical properties on the resulting complex. At the subneurotoxic concentrations, Cu(II)-Aβ (but not Aβ or Cu(II) alone) treatment induced an activating morphological phenotype of microglia and induced the microglial release of TNF-α and nitric oxide as well as microglia-mediated neuronal damage. Cu(II)-Aβ-triggered microglial activation was blocked by nuclear factor (NF)-κB inhibitors and was accompanied with NF-κB activation. Moreover, Cu(II)-Aβ induced hydrogen peroxide release, which was not affected by NADPH oxidase inhibitors. Mitochondrial superoxide production was increased after Cu(II)-Aβ stimulation. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), inhibited Cu(II)-Aβ-elicited microglial release of TNF-α and nitric oxide as well as the microglia-mediated neurotoxic effect.

Conclusion

Our observations suggest that Cu(II) enhances the effect of Aβ on microglial activation and the subsequent neurotoxicity. The Cu(II)-Aβ-triggered microglial activation involves NF-κB activation and mitochondrial ROS production.

【 授权许可】

   
2015 Yu et al.

【 预 览 】
附件列表
Files Size Format View
20150804112458147.pdf 2356KB PDF download
Fig. 9. 15KB Image download
Fig. 8. 51KB Image download
Fig. 7. 16KB Image download
Fig. 6. 28KB Image download
Fig. 5. 13KB Image download
Fig. 4. 51KB Image download
Fig. 3. 26KB Image download
Fig. 2. 30KB Image download
Fig. 1. 36KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

【 参考文献 】
  • [1]Niranjan R: Molecular basis of etiological implications in Alzheimer’s disease: focus on neuroinflammation. Mol Neurobiol 2013, 48:412-28.
  • [2]Bachstetter AD, Norris CM, Sompol P, Wilcock DM, Goulding D, Neltner JH, et al.: Early stage drug treatment that normalizes proinflammatory cytokine production attenuates synaptic dysfunction in a mouse model that exhibits age-dependent progression of Alzheimer’s disease-related pathology. J Neurosci 2012, 32:10201-10.
  • [3]Karran E, Mercken M, De Strooper B: The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 2011, 10:698-712.
  • [4]Li Y, Tan MS, Jiang T, Tan L: Microglia in Alzheimer’s disease. Biomed Res Int 2014, 2014:437483.
  • [5]Jekabsone A, Mander PK, Tickler A, Sharpe M, Brown GC: Fibrillar beta-amyloid peptide Aβ 1-40 activates microglial proliferation via stimulating TNF-α release and H 2 O 2 derived from NADPH oxidase: a cell culture study. J Neuroinflammation 2006, 3:24. BioMed Central Full Text
  • [6]Maezawa I, Zimin PI, Wulff H, Jin LW: Amyloid-β protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity. J Biol Chem 2011, 286:3693-706.
  • [7]Bolognin S, Messori L, Drago D, Gabbiani C, Cendron L, Zatta P: Aluminum, copper, iron and zinc differentially alter amyloid-Aβ 1-42 aggregation and toxicity. Int J Biochem Cell Biol 2011, 43:877-85.
  • [8]Lin CJ, Huang HC, Jiang ZF: Cu(II) interaction with amyloid-β peptide: a review of neuroactive mechanisms in AD brains. Brain Res Bull 2010, 82:235-42.
  • [9]Tõugu V, Tiiman A, Palumaa P: Interactions of Zn(II) and Cu(II) ions with Alzheimer’s amyloid-beta peptide. Metal ion binding, contribution to fibrillization and toxicity. Metallomics 2011, 3:250-61.
  • [10]Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR: Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 1998, 158:47-52.
  • [11]Rajendran R, Minqin R, Ynsa MD, Casadesus G, Smith MA, Perry G, et al.: A novel approach to the identification and quantitative elemental analysis of amyloid deposits–insights into the pathology of Alzheimer’s disease. Biochem Biophys Res Commun 2009, 382:91-5.
  • [12]Hozumi I, Hasegawa T, Honda A, Ozawa K, Hayashi Y, Hashimoto K, et al.: Patterns of levels of biological metals in CSF differ among neurodegenerative diseases. J Neurol Sci 2011, 303:95-9.
  • [13]Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NM, Romano DM, et al.: Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem 1998, 273:12817-26.
  • [14]Sarell CJ, Wilkinson SR, Viles JH: Substoichiometric levels of Cu 2+ ions accelerate the kinetics of fiber formation and promote cell toxicity of amyloid-β from Alzheimer disease. J Biol Chem 2010, 285:41533-40.
  • [15]Smith DP, Ciccotosto GD, Tew DJ, Fodero-Tavoletti MT, Johanssen T, Masters CL, et al.: Concentration dependent Cu 2+ induced aggregation and dityrosine formation of the Alzheimer’s disease amyloid-β peptide. Biochemisry 2007, 46:2881-91.
  • [16]Hoffmann A, Baltimore D: Circuitry of nuclear factor κB signaling. Immunol Rev 2006, 210:171-86.
  • [17]Ba X, Gupta S, Davidson M, Garg NJ: Trypanosoma cruzi induces the reactive oxygen species-PARP-1-RelA pathway for up-regulation of cytokine expression in cardiomyocytes. J Biol Chem 2010, 285:11596-606.
  • [18]Musonda CA, Chipman JK: Quercetin inhibits hydrogen peroxide (H 2 O 2 )-induced NF-κB DNA binding activity and DNA damage in HepG2 cells. Carcinogenesis 1998, 19:1583-9.
  • [19]Kauppinen TM, Higashi Y, Suh SW, Escartin C, Nagasawa K, Swanson RA: Zinc triggers microglial activation. J Neurosci 2008, 28:5827-35.
  • [20]Pawate S, Shen Q, Fan F, Bhat NR: Redox regulation of glial inflammatory response to lipopolysaccharide and interferonγ. J Neurosci Res 2004, 77:540-51.
  • [21]Hu Z, Yu F, Gong P, Qiu Y, Zhou W, Cui Y, et al.: Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS. Toxicol Appl Pharmacol 2014, 276:95-103.
  • [22]Naik E, Dixit VM: Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 2011, 208:417-20.
  • [23]Park J, Min JS, Kim B, Chae UB, Yun JW, Choi MS, et al.: Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways. Neurosci Lett 2014, 584C:191-6.
  • [24]Voloboueva LA, Emery JF, Sun X, Giffard RG: Inflammatory response of microglial BV-2 cells includes a glycolytic shift and is modulated by mitochondrial glucose-regulated protein 75/mortalin. FEBS Lett 2013, 587:756-62.
  • [25]Wang Y, Xia Z, Xu JR, Wang YX, Hou LN, Qiu Y, et al.: α-mangostin, a polyphenolic xanthone derivative from mangosteen, attenuates β-amyloid oligomers-induced neurotoxicity by inhibiting amyloid aggregation. Neuropharmacology 2012, 62:871-81.
  • [26]Raman B, Ban T, Yamaguchi K, Sakai M, Kawai T, Naiki H, et al.: Metal ion-dependent effects of clioquinol on the fibril growth of an amyloid β peptide. J Biol Chem 2005, 280:16157-62.
  • [27]Serou MJ, DeCoster MA, Bazan NG: Interleukin-1 beta activates expression of cyclooxygenase-2 and inducible nitric oxide synthase in primary hippocampal neuronal culture: platelet-activating factor as a preferential mediator of cyclooxygenase-2 expression. J Neurosci Res 1999, 58:593-8.
  • [28]Pyrgiotakis G, Kundakcioglu OE, Finton K, Pardalos PM, Powers K, Moudgil BM: Cell death discrimination with Raman spectroscopy and support vector machines. Ann Biomed Eng 2009, 37:1464-73.
  • [29]Xie Z, Wei M, Morgan TE, Fabrizio P, Han D, Finch CE, et al.: Peroxynitrite mediates neurotoxicity of amyloid β-peptide1-42- and lipopolysaccharide-activated microglia. J Neurosci 2002, 22:3484-92.
  • [30]Dalal NV, Pranski EL, Tansey MG, Lah JJ, Levey AI, Betarbet RS: RNF11 modulates microglia activation through NF-κB signalling cascade. Neurosci Lett 2012, 528:174-9.
  • [31]Koopman WJ, Nijtmans LG, Dieteren CE, Roestenberg P, Valsecchi F, Smeitink JA, et al.: Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid Redox Signal 2010, 12:1431-70.
  • [32]Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, et al.: Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 2003, 278:8516-25.
  • [33]Combs CK, Karlo JC, Kao SC, Landreth GE: β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 2001, 21:1179-88.
  • [34]Mander PK, Jekabsone A, Brown GC: Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase. J Immunol 2006, 176:1046-52.
  • [35]Brand MD: The sites and topology of mitochondrial superoxide production. Exp Gerontol 2010, 45:466-72.
  • [36]Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, et al.: Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 2001, 60:759-67.
  • [37]Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G, Smith MA: Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol 2006, 65:631-41.
  • [38]Di Domenico F, Barone E, Perluigi M, Butterfield DA: Strategy to reduce free radical species in Alzheimer’s disease: an update of selected antioxidants. Expert Rev Neurother 2015, 15:19-40.
  • [39]Bavarsad Shahripour R, Harrigan MR, Alexandrov AV: N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain Behav 2014, 4:108-22.
  • [40]Berk M, Malhi GS, Gray LJ, Dean OM: The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol Sci 2013, 34:167-77.
  • [41]Remington R, Bechtel C, Larsen D, Samar A, Doshanjh L, Fishman P, et al.: A phase II randomized clinical trial of a nutritional formulation for cognition and mood in Alzheimer’s disease. J Alzheimers Dis 2015, 45:395-405.
  • [42]Shibuya Y, Chang CC, Huang LH, Bryleva EY, Chang TY: Inhibiting ACAT1/SOAT1 in microglia stimulates autophagy-mediated lysosomal proteolysis and increases Aβ1-42 clearance. J Neurosci 2014, 34:14484-501.
  • [43]Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, et al.: Inflammatory response in the hippocampus of PS1 M146L /APP 751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 2008, 28:11650-61.
  • [44]Choo XY, Alukaidey L, White AR, Grubman A: Neuroinflammation and copper in Alzheimer’s disease. Int J Alzheimers Dis 2013, 2013:145345.
  • [45]Du X, Wang Z, Zheng Y, Li H, Ni J, Liu Q: Inhibitory effect of selenoprotein P on Cu + /Cu 2+ -induced Aβ 42 aggregation and toxicity. Inorg Chem 2014, 53:1672-16788.
  • [46]Rossi-George A, Guo CJ, Oakes BL, Gow AJ: Copper modulates the phenotypic response of activated BV2 microglia through the release of nitric oxide. Nitric Oxide 2012, 27:201-9.
  文献评价指标  
  下载次数:17次 浏览次数:18次