Journal of Clinical Bioinformatics | |
FISH Oracle 2: a web server for integrative visualization of genomic data in cancer research | |
Stefan Kurtz2  Ronald Simon1  Malte Mader1  | |
[1] Department of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;Center for Bioinformatics, University of Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany | |
关键词: TTC28; TCGA; ICGC; GenomeTools; Web server; Cancer genomics; Integrative visualization; Genomic data; | |
Others : 800992 DOI : 10.1186/2043-9113-4-5 |
|
received in 2013-12-23, accepted in 2014-03-26, 发布年份 2014 | |
【 摘 要 】
Background
A comprehensive view on all relevant genomic data is instrumental for understanding the complex patterns of molecular alterations typically found in cancer cells. One of the most effective ways to rapidly obtain an overview of genomic alterations in large amounts of genomic data is the integrative visualization of genomic events.
Results
We developed FISH Oracle 2, a web server for the interactive visualization of different kinds of downstream processed genomics data typically available in cancer research. A powerful search interface and a fast visualization engine provide a highly interactive visualization for such data. High quality image export enables the life scientist to easily communicate their results. A comprehensive data administration allows to keep track of the available data sets. We applied FISH Oracle 2 to published data and found evidence that, in colorectal cancer cells, the gene TTC28 may be inactivated in two different ways, a fact that has not been published before.
Conclusions
The interactive nature of FISH Oracle 2 and the possibility to store, select and visualize large amounts of downstream processed data support life scientists in generating hypotheses. The export of high quality images supports explanatory data visualization, simplifying the communication of new biological findings. A FISH Oracle 2 demo server and the software is available athttp://www.zbh.uni-hamburg.de/fishoracle webcite.
【 授权许可】
2014 Mader et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140708002021464.pdf | 3376KB | download | |
Figure 5. | 90KB | Image | download |
Figure 4. | 76KB | Image | download |
Figure 3. | 67KB | Image | download |
Figure 2. | 171KB | Image | download |
Figure 1. | 73KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]E N C O D E Project Consortium: An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489(7414):57-74. http://dx.doi.org/10.1038/nature11247 webcite
- [2]1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA: An integrated map of genetic variation from 1,092 human genomes. Nature 2012, 491(7422):56-65. http://dx.doi.org/10.1038/nature11632 webcite
- [3]The cancer genome Atlas http://cancergenome.nih.gov/ webcite
- [4]International Cancer Genome Consortium: International network of cancer genome projects. Nature 2010, 464(7291):993-998. http://dx.doi.org/10.1038/nature08987 webcite
- [5]Applications of next-generation sequencinghttp://www.nature.com/nrg/series/nextgeneration/index.html webcite
- [6]Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, García-Girón C, Gordon L, Hourlier T, Hunt S, Juettemann T, Kähäri AK, Keenan S, Komorowska M, Kulesha E, Longden I, Maurel T, McLaren WM, Muffato M, Nag R, Overduin B, Pignatelli M, Pritchard B, Pritchard E, et al.: Ensembl 2013. Nucleic Acids Res 2013, 41(Database issue):D48-D55. http://dx.doi.org/10.1093/nar/gks1236 webcite
- [7]Kuhn RM, Haussler D, Kent WJ: The UCSC genome browser and associated tools. Brief Bioinform 2013, 14(2):144-161. http://dx.doi.org/10.1093/bib/bbs038 webcite
- [8]Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson E, Stajich JE, Harris TW, Arva A, Lewis S: The generic genome browser: a building block for a model organism system database. Genome Res 2002, 12(10):1599-1610. http://dx.doi.org/10.1101/gr.403602 webcite
- [9]Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH: JBrowse: a next-generation genome browser. Genome Res 2009, 19(9):1630-1638. http://dx.doi.org/10.1101/gr.094607.109 webcite
- [10]Goecks J, Coraor N, The Galaxy and Nekrutenko Team, Taylor J: NGS analyses by visualization with Trackster. Nat Biotech 2012, 30(11):1036-1039. http://dx.doi.org/10.1038/nbt.2404 webcite
- [11]Goecks J, Eberhard C, Too T, The Galaxy Team, Nekrutenko A, Taylor J: Web-based visual analysis for high-throughput genomics. BMC Genomics 2013, 14:397+. http://dx.doi.org/10.1186/1471-2164-14-397 webcite BioMed Central Full Text
- [12]Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA: Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012, 28(4):464-469. http://dx.doi.org/10.1093/bioinformatics/btr703 webcite
- [13]Abeel T, Van Parys T, Saeys Y, Galagan J, Van de Peer Y: GenomeView: a next-generation genome browser. Nucleic Acids Res 2012, 40(2):e12. http://dx.doi.org/10.1093/nar/gkr995 webcite
- [14]Fiume M, Smith EJM, Brook A, Strbenac D, Turner B, Mezlini AM, Robinson MD, Wodak SJ, Brudno M: Savant Genome Browser 2: visualization and analysis for population-scale genomics. Nucleic Acids Res 2012, 40(Web Server issue):W615-W621. http://dx.doi.org/10.1093/nar/gks427 webcite
- [15]Thorvaldsdóttir H, Robinson JT, Mesirov JP: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013, 14(2):178-192. http://dx.doi.org/10.1093/bib/bbs017 webcite
- [16]Wang J, Kong L, Gao G, Luo J: A brief introduction to web-based genome browsers. Brief Bioinform 2013, 14(2):131-143. http://dx.doi.org/10.1093/bib/bbs029 webcite
- [17]Nielsen CB, Cantor M, Dubchak I, Gordon D, Wang T: Visualizing genomes: techniques and challenges. Nat Methods 2010, 7(3 Suppl):S5-S15. http://dx.doi.org/10.1038/nmeth.1422 webcite
- [18]Bare JC, Koide T, Reiss DJ, Tenenbaum D, Baliga NS: Integration and visualization of systems biology data in context of the genome. BMC Bioinformatics 2010, 11:382. http://dx.doi.org/10.1186/1471-2105-11-382 webcite BioMed Central Full Text
- [19]Jimenez RC, Salazar GA, Gel B, Dopazo J, Mulder N, Corpas M: myKaryoView: a light-weight client for visualization of genomic data. PLoS One 2011, 6(10):e26345. http://dx.doi.org/10.1371/journal.pone.0026345 webcite
- [20]Jenkinson AM, Albrecht M, Birney E, Blankenburg H, Down T, Finn RD, Hermjakob H, Hubbard TJP, Jimenez RC, Jones P, Kähäri A, Kulesha E, Macías JR, Reeves GA, Prlií A: Integrating biological data–the distributed annotation system. BMC Bioinformatics 2008., S3(Suppl 8) http://dx.doi.org/10.1186/1471-2105-9-S8-S3 webcite
- [21]23AndMe https://www.23andme.com/ webcite
- [22]Shannon PT, Reiss DJ, Bonneau R, Baliga NS: The Gaggle: an open-source software system for integrating bioinformatics software and data sources. BMC Bioinformatics 2006, 7:176. http://dx.doi.org/10.1186/1471-2105-7-176 webcite BioMed Central Full Text
- [23]Mader M, Simon R, Steinbiss S, Kurtz S: FISH Oracle: a web server for flexible visualization of DNA copy number data in a genomic context. J Clin Bioinform 2011, 1:20. BioMed Central Full Text
- [24]Steinbiss S, Gremme G, Schärfer C, Mader M, Kurtz S: AnnotationSketch: a genome annotation drawing library. Bioinformatics 2009, 25(4):533-534. http://bioinformatics.oxfordjournals.org/cgi/content/full/25/4/533 webcite
- [25]Gremme G, Steinbiss S, Kurtz S: GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans Comput Biol Bioinform 2013, 10(3):645-656.
- [26]Venkatraman ES, Olshen AB: A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 2007, 23(6):657-663. http://dx.doi.org/10.1093/bioinformatics/btl646 webcite
- [27]Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SFA, Hakonarson H, Bucan M: PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 2007, 17(11):1665-1674. http://dx.doi.org/10.1101/gr.6861907 webcite
- [28]Tomlins AT, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005, 310(5748):644-648. http://dx.doi.org/10.1126/science.1117679 webcite
- [29]Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM, Murphy MR, O’Leary NA, Pujar S, Rajput B, Rangwala SH, Riddick LD, Shkeda A, Sun H, Tamez P, Tully RE, Wallin C, Webb D, Weber J, Wu W, DiCuccio M, Kitts P, Maglott DR, D MT, Ostell JM: RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 2014, 42(D1):D756-D763.
- [30]Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K: dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001, 29:308-311.
- [31]MacDonald JR, Ziman R, Yuen RKC, Feuk L, Scherer SW: The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res 2014, 42(D1):D986-D992.
- [32]Weischenfeldt J, Simon R, Feuerbach L, Schlangen K, Weichenhan D, Minner S, Wuttig D, Warnatz H, Stehr S, Rausch T, Jäger N, Gu L, Bogatyrova O, Stütz A, Claus R, Eils J, Eils R, Gerhäuser C, Huang P, Hutter B, Kabbe R, Lawerenz C, Radomski S, Bartholomae C, Fälth M, Gade S, Schmidt M, Amschler N, Haß T, Galal R, et al.: Integrative genomic analyses reveal androgen-driven somatic alteration landscape in early-onset prostate cancer. Cancer Cell 2013, 23(2):159-170.
- [33]Brase JC, Johannes M, Mannsperger H, Fälth M, Metzger J, Kacprzyk LA, Andrasiuk T, Gade S, Meister M, Sirma H, Sauter G, Simon R, Schlomm T, Beissbarth T, Korf U, Kuner R, Sültmann H: TMPRSS2-ERG-specific transcriptional modulation is associated with prostate cancer biomarkers and TGF-β signaling. BMC Cancer 2011, 11:507. http://dx.doi.org/10.1186/1471-2407-11-507 webcite
- [34]Blum R, Gupta R, Burger PE, Ontiveros CS, Salm SN, Xiong X, Kamb A, Wesche H, Marshall L, Cutler G, Wang X, Zavadil J, Moscatelli D, Wilson EL: Molecular signatures of prostate stem cells reveal novel signaling pathways and provide insights into prostate cancer. PLoS One 2009, 4(5):e5722. http://dx.doi.org/10.1371/journal.pone.0005722 webcite
- [35]Gupta S, Iljin K, Sara H, Mpindi JP, Mirtti T, Vainio P, Rantala J, Alanen K, Nees M, Kallioniemi O: FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 2010, 70(17):6735-6745. http://dx.doi.org/10.1158/0008-5472.CAN-10-0244 webcite
- [36]Mani RS, Tomlins SA, Callahan K, Ghosh A, Nyati MK, Varambally S, Palanisamy N, Chinnaiyan AM: Induced chromosomal proximity and gene fusions in prostate cancer. Science 2009, 326(5957):1230. http://dx.doi.org/10.1126/science.1178124 webcite
- [37]Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, Onofrio R, Carter SL, Park K, Habegger L, Ambrogio L, Fennell T, Parkin M, Saksena G, Voet D, Ramos AH, Pugh TJ, Wilkinson J, Fisher S, Winckler W, Mahan S, Ardlie K, Baldwin J, Simons JW, Kitabayashi N, MacDonald TY, Kantoff PW, Chin L, Gabriel SB, Gerstein MB, Golub TR, Meyerson M, Tewari A, et al.: The genomic complexity of primary human prostate cancer. Nature 2011, 470(7333):214-220. http://dx.doi.org/10.1038/nature09744 webcite
- [38]Krohn A, Diedler T, Burkhardt L, Mayer P, De Silva C, Meyer-Kornblum M, Kötschau D, Tennstedt P, Huang J, Gerhäuser C, Mader M, Kurtz S, Sirma H, Saad F, Steuber T, Graefen M, Plass C, Sauter G, Simon R, Minner S, Schlomm T: Genomic deletion of PTEN is associated with tumor progression and early PSA recurrence in ERG fusion-positive and fusion-negative prostate cancer. Am J Pathol 2012, 181(2):401-12.
- [39]Krohn A, Seidel A, Burkhardt L, Bachmann F, Mader M, Grupp K, Eichenauer T, Becker A, Adam M, Graefen M, Huland H, Kurtzn S, Steurern S, Tsourlakis MC, Minner S, Michl U, Schlomm T, Sauter G, Simon R, Sirma H: Recurrent deletion of 3p13 targets multiple tumor suppressor genes and defines a distinct subgroup of aggressive ERG fusion positive prostate cancers. J Pathol 2013, 130-141. http://dx.doi.org/10.1002/path.4223 webcite
- [40]Thorne JL, Campbell MJ, Turner BM: Transcription factors, chromatin and cancer. Int J Biochem Cell Biol 2009, 41:164-175. http://www.sciencedirect.com/science/article/pii/S1357272508003452 webcite
- [41]Battaglia S, Maguire O, Campbell MJ: Transcription factor co-repressors in cancer biology: roles and targeting. Int J Cancer 2010, 126(11):2511-2519. http://dx.doi.org/10.1002/ijc.25181 webcite
- [42]The cancer genome atlas data portal https://tcga-data.nci.nih.gov/tcga/ webcite
- [43]Cancer Genome Atlas Network: Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012, 487(7407):330-337. http://dx.doi.org/10.1038/nature11252 webcite
- [44]Knudson A Jr: Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 1971, 68(4):820-823.
- [45]Croce CM, Sozzi G, Huebner K: Role of FHIT in Human Cancer. J Clin Oncol 1999, 17(5):1618. http://jco.ascopubs.org/content/17/5/1618.abstract webcite
- [46]Pitkänen E, Cajuso T, Katainen R, Kaasinen E, Vëlimäki N, Palin K, Taipale J, Aaltonen L, Kilpivaara O: Frequent L1 retrotranspositions originating from TTC28 in colorectal cancer. Oncotarget 2014, 5:3. http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path%5B%5D=1781 webcite
- [47]Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR: A census of human cancer genes. Nat Rev Cancer 2004, 4(3):177-183. http://dx.doi.org/10.1038/nrc1299 webcite
- [48]McKusick-Nathans Institute of Genetic Medicine: Online Mendelian Inheritance in Man, OMIM. Johns Hopkins University (Baltimore, MD): National Human Research Institut; http://omim.org webcite