Italian Journal of Pediatrics | |
Molecular pathogenesis of myocardial remodeling and new potential therapeutic targets in chronic heart failure | |
Pietro Sciacca1  Giuseppe Distefano1  | |
[1] Department of Pediatrics, Pediatric Cardiology Service, University of Catania, Via S Sofia 78, Catania, 95123, Italy | |
关键词: Myocardial gene and regenerative therapy; Molecular therapeutic targets; Myocardial remodeling; Chronic heart failure; | |
Others : 825771 DOI : 10.1186/1824-7288-38-41 |
|
received in 2012-06-25, accepted in 2012-08-26, 发布年份 2012 | |
【 摘 要 】
It is well known that the natural history of chronic heart failure (CHF),regardless of age and aetiology,is characterized by progressive cardiac dysfunction refractory to conventional cardiokinetic, diuretic and peripheral vasodilator therapy. Several previous studies, both in animals and humans, showed that the key pathogenetic element of CHF negative clinical evolution is constituted by myocardial remodeling. This is a complex pathologic process of ultrastructural rearrangement of the heart induced by various neuro-humoral factors released by cardiac fibrocells in response to biomechanical stress connected to chronic haemodynamic overload. Typical features of myocardial remodeling are represented by cardiomyocytes hypertrophy and apoptosis, extracellular matrix alterations, mesenchymal fibrotic and phlogistic processes and by cardiac gene expression modifications with fetal genetic program reactivation. In the last years, increasing knowledge of subtle molecular and cellular mechanisms involved in myocardial remodeling has led to the discovery of some new potential therapeutic targets capable of inducing its regression. In this paper our attention is focused on the possible use of antiapoptotic and antifibrotic agents, and on the fascinating perspectives offered by the development of myocardial gene therapy and, in particular, by myocardial regenerative therapy.
【 授权许可】
2012 Distefano and Sciacca; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140713073537625.pdf | 1120KB | download | |
Figure 8. | 37KB | Image | download |
Figure 7. | 51KB | Image | download |
Figure 6. | 35KB | Image | download |
Figure 5. | 34KB | Image | download |
Figure 4. | 27KB | Image | download |
Figure 3. | 45KB | Image | download |
Figure 2. | 61KB | Image | download |
Figure 1. | 38KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
【 参考文献 】
- [1]Distefano G: Aspetti peculiari della terapia dello scompenso cardiaco nell’infanzia. Revisione della letteratura e dati personali. Ped Med Chir 1991, 13:333-344.
- [2]Krum H, Abraham WT: Heart failure. Lancet 2009, 373:941-955.
- [3]Kozlik R, Kramer HH, Wicht H, Krian A, Ostermeyer J, Reinhardt D: Myocardial beta-adrenoceptor density and the distribution of beta 1- and beta 2-adrenoceptor subpopulations in children with congenital heart disease. Eur J Pediatr 1991, 150:388-394.
- [4]Weber KT: Aldosterone and spironolactone in heart failure. N Engl J Med 1999, 341:753-754.
- [5]B Swynghedauw (Ed): Molecular Cardiology for the Cardiologist. Second edition. Kluwer Academic Publishers; 1998.
- [6]Colucci WS: Molecular and cellular mechanism of myocardial failure. J Cardiol 1997, 80:15L-25L.
- [7]Bristow MR: Why does the myocardium fail? Insights from basic science. Lancet 1998, 352:8-14.
- [8]Soltysinsca E, Olesen SP, Osadchii OE: Myocardial structural, contractile and electrophysiological changes in the guinea -pig heart failure model induced by chronic sympathetic activation. Exp Physiol 2011, 96:647-663.
- [9]Talan MI, Ahmet I, Xiao RP, Lakatta EG: Beta2 AR agonists in treatment of chronic heart failure:long path to translation. J Mol Cell Cardiol 2011, 51:529-533.
- [10]Messaoudi S, Azibani F, Delcayre C, Jaisser F: Aldosterone, mineralocorticoid receptor, and heart failure. Mol Cell Endocrinol 2012, 350:266-272.
- [11]Yin WH, Chen YH, Wei J, Jen HL, Huang WP, Young MS, Chen DC, Liu PL: Associations between endothelin-1 and adiponectin in chronic heart failure. Cardiology 2011, 118:207-216.
- [12]Distefano G: Rimodellamento miocardico e nuove strategie terapeutiche nella insufficienza cardiaca cronica. Riv Ital Pediatr 2001, 27:311-317.
- [13]Shah AM, Mann DL: In search of new therapeutic targets and strategies for heart failure:recent advances in basic science. Lancet 2011, 378:704-712.
- [14]Palomeque J, Delbridge L, Petroff MV: Angiotensin II: a regulator of cardiomyocyte function and survival. Frontiers in Bioscience 2009, 14:5118-5133.
- [15]Izumo S, Nadal-Ginard B, Mahdavi V: Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Nat Acad Sci USA 1998, 85:339-343.
- [16]Kuwahara K, Nakao K: New molecular mechanisms for cardiovascular disease:transcriptional pathways and novel therapeutic targets in heart filure. J Pharmacol Sci 2011, 116:337-342.
- [17]Dhalla NS, Saini-Chohan HK, Rodriguez-Leyva D, Elimban V, Dent MR, Tappia PS: Subcellular remodeling may induce cardiac dysfunction in congestive heart failure. Cardiovasc Res 2009, 81:429-438.
- [18]Diwan A, Dorn GW II: Decompensation of cardiac hypertrophy:cellular mechanisms and novel therapeutic targets. Physiology 2007, 22:56-64.
- [19]Chien KR: Stress pathways and heart failure. Cell 1999, 98:555-558.
- [20]Weber KT, Brilla CG, Janicki JS: Myocardial fibrosis:its functional significance and regulatory factors. Cardiovasc Res 1993, 27:341-348.
- [21]Dorn GW II: Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodeling. Cardiovasc Res 2009, 81:465-473.
- [22]Hunter JJ, Chien KR: Signaling pathways for cardiac hypertrophy and failure. New Engl J Med 1999, 341:1276-1283.
- [23]Bernardo BC, Weeks KL, Pretorius L, McMullen JR: Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacology and Therapeutics 2010, 128:191-227.
- [24]Givertz MM, Colucci WS: New target for heart failure therapy:endothelin, inflammatory cytochines and oxidative stress. Lancet 1998, 352(Suppl 1):S134-S138.
- [25]Eichorn EJ, Bistow MR: Practical guidelines for initiation of beta-adrenergic blockade in patients with chronic heart failure. Am J Cardiol 1997, 79:794-798.
- [26]Bristow MR, Gilbert EM, Lowes BD: Changes in myocardial gene expression associated with beta-blocker-related improvement in ventricular systolic function. Circulation 1997, 96:I-92. Abstract
- [27]Kirkby NS, Hadoke PWF, Bagnall AJ, Webb DJ: The endothelin system as a therapeutic target in cardiovascular disease: great expectations or bleak house? Brit J Pharmacol 2008, 153:1105-1119.
- [28]Bozkurt B, Mann DL, Deswal A: Biomarkers of inflammation in heart failure. Heart Fail Rev 2010, 15:331-341.
- [29]Chung ES, Packer M, Lo KA, Fasanmade AA, Willerson JT: Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the Anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 2003, 107:3133-3140.
- [30]Mann DL, McMurray JJ, Packer M: Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 2004, 109:1594-1602.
- [31]Shaw ST, Shah MKH, Williams SG, Fildes JE: Immunological mechanisms of pentoxifylline in chronic heart failure. Eur J Heart Fail 2009, 11:113-118.
- [32]McKinsey TA: Targeting inflammation in heart failure with Histone Deacetylase Inhibitors. Mol Med 2011, 17(5–6):434-441.
- [33]Foo RSY, Mani K, Kitsis RN: Death begets failure in the heart. J Cin Invest 2005, 115:565-571.
- [34]Gonzàlez A, Ravassa S, Beaumont J, Lopez B, Diez J: New targets to treat the structural remodeling of the myocardium. J Am Coll Cardiol 2011, 58:1833-1843.
- [35]Jougasaki M, Leskinen H, Larsen AM: Venticular cardiotophin-1 activation precedes BNP in experimental heart failure. Peptides 2003, 24:889-892.
- [36]Shen DF, Tang QZ, Yan L, Zhang Y, Zhu LH, Wang L, Liu C, Bian ZY, Li H: Tetrandrine blocks cardiac hypertrophy by disrupting reactive oxygen species-dependent ERK1/2 signalling. Brit J Pharmacol 2010, 159:970-981.
- [37]Wang G, Hamid T, Keith RJ, Zhou G, Partridge CR, Xiang X, et al.: Cardioprotective and antiapoptotic effects of heme oxygenase-1 in the failing heart. Circulation 2010, 121:1912-1925.
- [38]Clark JE, Naughton P, Shurey S, Green CJ, Johnson TR, Mann B, Foresti R, Motterlini R: Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ Res 2003, 93:e2-e8.
- [39]Parcellier A, Tintignac LA, Zhuravleva E, Hemmings B: PKB and the mitochondria: AKTing on apoptosis. Cell Signal 2008, 20:21-30.
- [40]Distefano G: Molecular pathogenetic mechanisms and new therapeutic perspectives in anthracycline-induced cardiomyopathy. Ital J Pediatr 2009, 35:37-44. BioMed Central Full Text
- [41]Westermann D, Lettau O, Sobirey M, Riad A, Bader M, Schultheiss HP, Tschope C: Doxorubicin cardiomyopathy –induced inflammation and apoptosis are attenuated by gene deletion of the kinin B1 receptor. Biol Chem 2008, 389:713-718.
- [42]Kim KH, Oudit GY, Backx PH: Erythropoietin protects against doxorubicin-induced cardiomyopathy via a phosphatidyl-inositol 3-kinase-dependent pathway. J Pharmacol Exp Ther 2008, 324:160-169.
- [43]Niebauer J, Pflaum CD, Clark AL: Deficient insulin-growth factor I in chronic heart failure predict altered body composition, anabolic deficiency, cytokine and neurohormonal activation. J Am Coll Cardiol 1998, 32:393-397.
- [44]Weber KT, Sun Y, Campbell SE: Structural remodeling of the heart by fibrous tissue: role of circulating hormones and locally produced peptides. Eur Heart J 1995, 16(Suppl N):12-18.
- [45]Lòpez B, Gonzàlez A, Hermida N, Valencia F, de Teresa E, Diez J: Role of lysyl oxidase in myocardial fibrosis: from basic science to clinical aspects. Am J Physiol Heart Circ Physiol 2010, 299:H1-H9.
- [46]Lòpez B, Gonzàlez A, Beaumont J, Querejeta R, Larman M, Diez J: Identification of a potential cardiac antifibrotic mechanism of torasemide in patients with chronic heart failure. J Am Coll Cardiol 2007, 50:859-867.
- [47]Baursachs J: Regulation of myocardial fibrosis by microRNA. J Cardiovasc Pharmacol 2010, 56:454-459.
- [48]Isner JM: Myocardial gene therapy. Nature 2002, 415:234-239.
- [49]Kizana E: Therapeutic prospects of cardiac gene transfer. Heart, Lung and Circulation 2007, 16:180-184.
- [50]Lyon AR, Sato M, Hajjar RJ, Samulski RJ, Harding SE: Gene therapy: targeting the myocardium. Heart 2008, 94:89-99.
- [51]Rapti K, Chaanine AH, Hajjar RJ: Targeted gene therapy for the treatment of heart failure. Can J Cardiol 2011, 27:265-283.
- [52]Jaski BE, Jessup ML, Mancini DM, et al.: Calcium upregulation by percutaneous administration of gene therapy in cardiac disease(CUPID Trial), a first-in-human phase 1/2 trial. J Card Fail 2009, 15:171-181.
- [53]Kratlian RG, Hajjar RJ: Cardiac gene therapy:from concept to reality. Curr Heart Fail Rep 2012, 9:33-39.
- [54]Kairouz V, Lipskaia L, Hajjar RJ, Chemaly ER: Molecular targets in heart failure gene therapy: current controversies and translational perspectives. Ann N Y Acad Sci 2012, 1254:42-50.
- [55]Segers VFM, Lee RT: Stem-cell therapy for cardiac disease. Nature 2008, 451:937-942.
- [56]Dimmeler S, Zeiher AM, Schneider D: Unchain my heart:the scientific foundations of cardiac repair. J Clin Invest 2005, 115:572-583.
- [57]Hermann JL, Abarbanell AM, Weil BR, Wang Y, Wang M, Tan J, Meldrum DR: Cell based therapy for ischemic heart disease:a clinical update. Ann Thorac Surg 2009, 88:1714-1722.
- [58]Leiker M, Suzuki G, Iyer VS, Canty JMJ, Lee T: Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells. Cell Transplant 2008, 17:911-922.
- [59]Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabè Haider F, Walsh S, et al.: Evidence for cardiomyocyte renewal in humans. Science 2009, 324(5923):98-102.
- [60]Torella D, Ellison GM, Mèndez-Ferrer S, Ibanez B, Ginard BN: Resident human cardiac stem cells:role in cardiac cellular homeostasis and potential for myocardial regeneration. Nat Clin Pract Cardiovasc Med 2006, 3(Suppl 1):s8-s13.
- [61]De Angelis A, Piegari E, Cappetta D, Marino L, Filippelli A, Berrino L, et al.: Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation 2010, 121:276-292.
- [62]Torella D, Ellison GM, Karakikes I, Nadal-Ginard B: Growth-factor-mediated cardiac stem cell activation in myocardial regeneration. Nat Clin Pract Cardiovasc Med 2007, 4(Suppl 1):s46-s51.
- [63]Urbanek K, Rota M, Cascapera S, Bearzi C, Nascimbene A, De Angelis A, et al.: Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 2005, 97:663-673.
- [64]Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ: Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 2011, 50:280-289.
- [65]Lionetti V, Bianchi G, Recchia FA, Ventura C: Control of autocrine and paracrine myocardial signals:an emerging therapeutic strategy in heart failure. Heart Fail Rev 2010, 15:531-542.
- [66]Gnecchi M, Zhang Z, Ni A, Dzau VJ: Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 2008, 103:1204-1219.
- [67]Caplan AI, Dennis JE: Mesnchymal stem cells as trophic mediators. J Cell Biochem 2006, 98:1076-1084.
- [68]Shabbir A, Zisa D, Suzuki G, Lee T: Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells:a non invasive therapeutic regimen. Am J Physiol Heart Circ Physiol 2009, 296(6):H1888-H1897.
- [69]Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Myiahara Y, et al.: Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 2005, 112:1128-1135.
- [70]Wei X, Du Z, Zhao L, Feng D, Wei G, He J, et al.: IFATS series:the conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats. Stem Cells 2009, 27:478-488.
- [71]Distefano G, Praticò AD: Actualities on molecular pathogenesis and repairing processes of cerebral damage in perinatal hypoxic-ischemic encephalopathy. Ital J Pediatr 2010, 36:63-72. BioMed Central Full Text