Head & Face Medicine | |
Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine muscle tissue does not induce new bone formation | |
C James Kirkpatrick2  Robert A Sader1  Oliver Kuenzel2  Ines Willershausen3  Mike Barbeck2  Samuel E Udeabor1  Shahram Ghanaati1  | |
[1] Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany;Institute of Pathology, REPAIR-Lab, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany;Department for Operative Dentistry, Johannes Gutenberg University Mainz, Mainz, Germany | |
关键词: Ectopic bone formation; Hydroxyapatite; ß-tricalciumphosphate; Nanocrystalline; NanoBone; Cerasorb; Osteoinduction; | |
Others : 813796 DOI : 10.1186/1746-160X-9-1 |
|
received in 2012-10-14, accepted in 2012-12-10, 发布年份 2013 | |
【 摘 要 】
Background
Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue.
Materials and methods
One gram each of either a porous beta-tricalcium phosphate (β-TCP) or an hydroxyapatite/silicon dioxide (HA/SiO2)-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precursor cells as well as mineralized and unmineralized bone matrix.
Results
Both materials underwent cellular degradation in which tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and TRAP-negative multinucleated giant cells were involved. The ß-TCP was completely resorbed within the observation period, whereas some granules of the HA-groups were still detectable after 180 days. Neither osteoblasts, osteoblast precursor cells nor extracellular bone matrix were found within the implantation bed of any of the analyzed biomaterials at any of the observed time points.
Conclusions
This study showed that ß-TCP underwent a faster degradation than the HA-based material. The lack of osteoinductivity for both materials might be due to their granular shape, as osteoinductivity in goat muscle has been mainly attributed to cylindrical or disc-shaped bone substitute materials. This hypothesis however requires further investigation to systematically analyze various materials with comparable characteristics in the same experimental setting.
【 授权许可】
2013 Ghanaati et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140710012405586.pdf | 1414KB | download | |
Figure 2. | 111KB | Image | download |
Figure 1. | 286KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Parikh SN: Bone grafts substitutes: past, present, future. J Postgrad Med 2002, 48:142-148.
- [2]Banwart JC, Asher MA, Hassanein RS: Iliac crest bone graft harvest donor site morbidity: a statistical evaluation. Spine 1995, 20:1055-1060.
- [3]Cowley SP, Anderson LD: Hernias through donor sites for iliac-bone grafts. J Bone Joint Surg Am 1983, 65:1023-1025.
- [4]Finkemeier CG: Bone-grafting and bone graft substitutes. J Bone Joint Surg 2002, 84:454-464.
- [5]Younger EM, Chapman MW: Morbidity at bone graft donor sites. J Orthop Trauma 1989, 3:192-195.
- [6]Friedlaender GE: Immune responses to osteochondral allografts. Current knowledge and future directions. Clin Orthop Relat Res 1983, 174:58-68.
- [7]Habibovic P, de Groot K: Osteoinductive biomaterials – properties and relevance in bone repair. J Tissue Eng Regen Med 2007, 1:25-32.
- [8]Traianedes K, Russell JL, Edwards JT, Stubbs HA, Shanahan IR, Knaack D: Donor age and gender effects on osteoinductivity of demineralised bone matrix. J Biomed Mater Res B Appl Biomater 2004, 70:21-29.
- [9]Habibovic P, Yuan H, van den Doel M, Sees TM, van Blitterswijk CA, de Groot K: Relevance of osteoinductive biomaterials in critical-sized orthotopic defect. J Orthop Res 2006, 24:867-876.
- [10]Yao J, Li X, Bao C, Zhang C, Chen Z, Fan H, et al.: Ectopic bone formation in adipose-derived stromal cell-seeded osteoinductive calcium phosphate scaffolds. J Biomater Appl 2010, 24:607-624.
- [11]Habibovic P, Yuan H, van der Valk CM, Meijer G, van Blitterswijk CA, de Groot K: 3D Microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 2005, 26:3565-3575.
- [12]Götz W, Lenz S, Reichert C, Henkel KO, Bienengräber V, Pernicka L, et al.: A preliminary study in osteoinduction by a nano-crystalline hydroxyapatite in the mini pig. Folia Histochem Cytobiol 2010, 48:589-596.
- [13]Stübinger S, Ghanaati S, Orth C, Hilbig U, Saldamli B, Biesterfeld S, et al.: Maxillary sinus grafting with a nano-structured biomaterial: preliminary clinical and histological results. Eur Surg Res 2009, 42:143-149.
- [14]Ghanaati S, Barbeck M, Willershausen I, Thimm B, Stuebinger S, Korzinskas T, et al.: Nanocrystalline hydroxyapatite bone substitute leads to sufficient bone tissue formation already after 3 months: histological and histomorphometrical analysis 3 and 6 months following human sinus cavity augmentation. Clin Implant Dent Relat Res 2012.
- [15]Gerber T, Holzhueter G, Goetz W, Bienengraeber V, Henkel KO, Rumpel E: Nanostructuring of biomaterials - a pathway to bone grafting substitute. Eur J Trauma 2006, 32:132-140.
- [16]Peters F, Reif D: Functional materials for bone regeneration from beta- tricalcium phosphat. Mater Werkst 2004, 35:203-207.
- [17]Ghanaati S, Webber MJ, Unger RE, Orth C, Hulvat JF, Kiehna SE: Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers. Biomaterials 2009, 30:6202-6212.
- [18]Ghanaati SM, Thimm BW, Unger RE, Orth C, Kohler T, Barbeck M, et al.: Collagen-embedded hydroxylapatite-beta-tricalcium phosphate-silicon dioxide bone substitute granules assist rapid vascularization and promote cell growth. Biomed Mater 2010, 5:25004.
- [19]Barrère F, van Blitterswijk CA, de Groot K: Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomedicine 2006, 1(3):317-332.
- [20]Ghanaati S, Barbeck M, Detsch R, Deisinger U, Hilbig U, Rausch V, et al.: The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics. Biomed Mater 2012, 7(1):015005.
- [21]Anderson JM: Biological responses to materials. Annu Rev Mater Res 2001, 31:81-110.
- [22]Anderson JM, Rodriguez A, Chang DT: Foreign body reaction to biomaterials. Semin Immunol 2008, 20:86-100.
- [23]Brodbeck WG, Anderson JM: Giant cell formation and function. Curr Opin Hematol 2009, 16:53-57.
- [24]Ghanaati S, Orth C, Barbeck M, Willershausen I, Thimm BW, Booms P, et al.: Histological and histomorphometrical analysis of a silica matrix embedded nanocrystalline hydroxyapatite bone substitute using the subcutaneous implantation model in wistar rats. Biomed Mater 2012, 5:035005.
- [25]Webster TJ, Ergun CD, Siegel RW, Bizios R: Enhanced functions of osteoclast-like cells on nanophase ceramics. Biomaterials 2001, 22:1327-1333.
- [26]Henkel KO, Gerber T, Lenz S, Gundlach KK, Bienengräber V: Macroscopical, histological, and morphometric studies of porous bone-replacement materials in minipigs 8 months after implantation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006, 102:606-613.
- [27]Geesink RG, de Groot K, Klein CP: Bonding of bone to apatite-coated implants. J Bone Joint Surg Br 1988, 70:11117-11122.
- [28]Hanawa T, Kamiura Y, Yamamoto S, Kohgo T, Amemiya A, Ukai H, et al.: Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. J Biomed Mater Res 1997, 36:131-136.
- [29]Kay JF, Cook SD: Biological profile of calcium phosphate coatings. In Hydroxylapatite coatings in orthopaedic surgery. Edited by Geesink RGT, Manley MT. New-York, USA: Raven Press Ltd; 1993:89-106.
- [30]Eid K, Zelicof S, Perona BP, Sledge CB, Glowacki J: Tissue reactions to particles of bone-substitute materials in intraosseous and heterotopic sites in rats: discrimination of osteoinduction, osteocompatibility, and inflammation. J Orthop Res 2001, 19:962-969.
- [31]Orii H, Sotome S, Chen J, Wang J, Shinomiya K: Beta-tricalcium phosphate (beta-TCP) graft combined with bone marrow stromal cells (MSCs) for posterolateral spine fusion. J Med Dent Sci 2005, 52:51-57.
- [32]Ghanaati S, Barbeck M, Orth C, Willershausen I, Thimm BW, Hoffmann C, et al.: Influence of beta-tricalcium phosphate granule size and morphology on tissue reaction in vivo. Acta Biomater 2010, 6:4476-4487.
- [33]Kurashina K, Kurita H, Wu Q, Ohtsuka A, Kobayashi H: Ectopic ostegenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphates in rabbits. Biomaterials 2002, 23:407-412.
- [34]Le Nihouannen D, Daculsi G, Saffarzadeh A, Gauthier O, Delplace S, Pilet P, et al.: Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone 2005, 36:1086-1093.
- [35]Yuan H, Yang Z, Li Y, Zhang X, de Bruijn JD, de Groot K: Osteoinduction by calcium phosphate biomaterials. J Mater Sci Mater Med 1998, 9:723-726.
- [36]Yuan H, de Bruijn JD, Li Y, Feng J, Yang Z, De Groot K, et al.: Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous alpha-TCP and beta-TCP. J Mater Sci Mater Med 2001, 12(1):7-13.
- [37]Habibovic P, Sees TM, van den Doel MA, van Blitterswijk CA, de Groot K: Osteoinduction by biomaterials physicochemical and structural influences. J Biomed Mater Res A 2006, 77:747-762.
- [38]Gosain AK, Song L, Riordan P, Amarante MT, Nagy PG, Wilson CR, et al.: A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part I. Plast Reconstr Surg 2002, 109:619-630.
- [39]Ripamonti U: Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 1996, 17:31-35.
- [40]Zerbo IR, Zijderveld SA, de Boer A, Bronckers AL, de Lange G, ten Bruggenkate CM, et al.: Histomorphometry of human sinus floor augmentation using a porous beta-tricalcium phosphate: a prospective study. Clin Oral Implants Res 2004, 15:724-732.
- [41]Zerbo IR, Bronckers AL, de Lange GL, van Beek GJ, Burger EH: Histology of human alveolar bone regeneration with a porous tricalcium phosphate. A report of two cases. Clin Oral Implants Res 2001, 12:379-384.
- [42]Canullo L, Dellavia C: Sinus lift using a nanocrystalline hydroxyapatite silica gel in severely resorbed maxillae: histological preliminary study. Clin Implant Dent Relat Res 2009, 11(Suppl 1):7-13.