期刊论文详细信息
Journal of Translational Medicine
Generation of lentivirus-induced dendritic cells under GMP-compliant conditions for adaptive immune reconstitution against cytomegalovirus after stem cell transplantation
Renata Stripecke6  Ulrike Koehl2  Arnold Ganser6  Michael Rothe5  Christof von Kalle3  Manfred Schmidt3  Raffaele Fronza3  Eliana Ruggiero3  Rainer Blasczyk1  Constanca Figueiredo1  Laura Gerasch6  Anusara Daenthanasanmak6  Klaus Kuehlcke4  Sonja Naundorf4  Olaf Oberschmidt2  Stephan Kloess2  Bala Sai Sundarasetty6 
[1] REBIRTH, Tolerogenic Cell Therapy, Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany;Institute of Cellular Therapeutics and GMP Core Facility IFB-Tx, Hannover Medical School, Hannover, Germany;Division of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany;EUFETS GmbH, Idar-Oberstein, Germany;Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany;Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, OE6862, Hans Borst Zentrum, Carl Neuberg Strasse 1, Hannover, 30625, Germany
关键词: Cytomegalovirus;    Stem cell transplantation;    Lentiviral vector;    Dendritic cell;    Monocyte;   
Others  :  1221434
DOI  :  10.1186/s12967-015-0599-5
 received in 2015-03-23, accepted in 2015-07-07,  发布年份 2015
PDF
【 摘 要 】

Background

Reactivation of latent viruses such as human cytomegalovirus (HCMV) after allogeneic hematopoietic stem cell transplantation (HSCT) results in high morbidity and mortality. Effective immunization against HCMV shortly after allo-HSCT is an unmet clinical need due to delayed adaptive T cell development. Donor-derived dendritic cells (DCs) have a critical participation in stimulation of naïve T cells and immune reconstitution, and therefore adoptive DC therapy could be used to protect patients after HSCT. However, previous methods for ex vivo generation of adoptive donor-derived DCs were complex and inconsistent, particularly regarding cell viability and potency after thawing. We have previously demonstrated in humanized mouse models of HSCT the proof-of-concept of a novel modality of lentivirus-induced DCs (“SmyleDCpp65”) that accelerated antigen-specific T cell development.

Methods

Here we demonstrate the feasibility of good manufacturing practices (GMP) for production of donor-derived DCs consisting of monocytes from peripheral blood transduced with an integrase-defective lentiviral vector (IDLV, co-expressing GM-CSF, IFN-α and the cytomegalovirus antigen pp65) that were cryopreserved and thawed.

Results

Upscaling and standardized production of one lot of IDLV and three lots of SmyleDCpp65 under GMP-compliant conditions were feasible. Analytical parameters for quality control of SmyleDCpp65 identity after thawing and potency after culture were defined. Cell recovery, uniformity, efficacy of gene transfer, purity and viability were high and consistent. SmyleDCpp65 showed only residual and polyclonal IDLV integration, unbiased to proto-oncogenic hot-spots. Stimulation of autologous T cells by GMP-grade SmyleDCpp65 was validated.

Conclusion

These results underscore further developments of this individualized donor-derived cell vaccine to accelerate immune reconstitution against HCMV after HSCT in clinical trials.

【 授权许可】

   
2015 Sundarasetty et al.

【 预 览 】
附件列表
Files Size Format View
20150731090124520.pdf 2832KB PDF download
Figure7. 77KB Image download
Figure6. 133KB Image download
Figure5. 40KB Image download
Figure4. 89KB Image download
Figure3. 83KB Image download
Figure2. 95KB Image download
Figure1. 118KB Image download
【 图 表 】

Figure1.

Figure2.

Figure3.

Figure4.

Figure5.

Figure6.

Figure7.

【 参考文献 】
  • [1]Mawad R, Gooley TA, Sandhu V, Lionberger J, Scott B, Sandmaier BM et al.. Frequency of allogeneic hematopoietic cell transplantation among patients with high- or intermediate-risk acute myeloid leukemia in first complete remission. J Clin Oncol. 2013; 31(31):3883-3888.
  • [2]Krenger W, Blazar BR, Hollander GA. Thymic T-cell development in allogeneic stem cell transplantation. Blood. 2011; 117(25):6768-6776.
  • [3]Boeckh M, Ljungman P. How we treat cytomegalovirus in hematopoietic cell transplant recipients. Blood. 2009; 113(23):5711-5719.
  • [4]Einsele H, Kapp M, Grigoleit GU. CMV-specific T cell therapy. Blood Cells Mol Dis. 2008; 40(1):71-75.
  • [5]Sung H, Schleiss MR. Update on the current status of cytomegalovirus vaccines. Expert Rev Vaccines. 2010; 9(11):1303-1314.
  • [6]Verdijk P, Aarntzen EH, Lesterhuis WJ, Boullart AC, Kok E, van Rossum MM et al.. Limited amounts of dendritic cells migrate into the T-cell area of lymph nodes but have high immune activating potential in melanoma patients. Clin Cancer Res. 2009; 15(7):2531-2540.
  • [7]Bousso P. T-cell activation by dendritic cells in the lymph node: lessons from the movies. Nat Rev Immunol. 2008; 8(9):675-684.
  • [8]Talarn C, Urbano-Ispizua A, Martino R, Perez-Simon JA, Batlle M, Herrera C et al.. Kinetics of recovery of dendritic cell subsets after reduced-intensity conditioning allogeneic stem cell transplantation and clinical outcome. Haematologica. 2007; 92(12):1655-1663.
  • [9]Grigoleit U, Riegler S, Einsele H, Laib Sampaio K, Jahn G, Hebart H et al.. Human cytomegalovirus induces a direct inhibitory effect on antigen presentation by monocyte-derived immature dendritic cells. Br J Haematol. 2002; 119(1):189-198.
  • [10]Feuchtinger T, Opherk K, Bicanic O, Schumm M, Grigoleit GU, Hamprecht K et al.. Dendritic cell vaccination in an allogeneic stem cell recipient receiving a transplant from a human cytomegalovirus (HCMV)-seronegative donor: induction of a HCMV-specific T(helper) cell response. Cytotherapy. 2010; 12(7):945-950.
  • [11]Grigoleit GU, Kapp M, Hebart H, Fick K, Beck R, Jahn G et al.. Dendritic cell vaccination in allogeneic stem cell recipients: induction of human cytomegalovirus (HCMV)-specific cytotoxic T lymphocyte responses even in patients receiving a transplant from an HCMV-seronegative donor. J Infect Dis. 2007; 196(5):699-704.
  • [12]Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J et al.. Trial watch: dendritic cell-based interventions for cancer therapy. Oncoimmunology. 2012; 1(7):1111-1134.
  • [13]Carroll RG, June CH. Programming the next generation of dendritic cells. Mol Ther. 2007; 15(5):846-848.
  • [14]Liechtenstein T, Perez-Janices N, Bricogne C, Lanna A, Dufait I, Goyvaerts C et al.. Immune modulation by genetic modification of dendritic cells with lentiviral vectors. Virus Res. 2013; 176(1–2):1-15.
  • [15]Pincha M, Sundarasetty BS, Stripecke R. Lentiviral vectors for immunization: an inflammatory field. Expert Rev Vaccines. 2010; 9(3):309-321.
  • [16]Coutant F, Sanchez David RY, Felix T, Boulay A, Caleechurn L, Souque P et al.. A nonintegrative lentiviral vector-based vaccine provides long-term sterile protection against malaria. PLoS One. 2012; 7(11):e48644.
  • [17]Karwacz K, Mukherjee S, Apolonia L, Blundell MP, Bouma G, Escors D et al.. Nonintegrating lentivector vaccines stimulate prolonged T-cell and antibody responses and are effective in tumor therapy. J Virol. 2009; 83(7):3094-3103.
  • [18]Negri DR, Michelini Z, Baroncelli S, Spada M, Vendetti S, Buffa V et al.. Successful immunization with a single injection of non-integrating lentiviral vector. Mol Ther. 2007; 15(9):1716-1723.
  • [19]Shaw A, Cornetta K. Design and potential of non-integrating lentiviral vectors. Biomedicines. 2014; 2:14-35.
  • [20]Daenthanasanmak A, Salguero G, Borchers S, Figueiredo C, Jacobs R, Sundarasetty BS et al.. Integrase-defective lentiviral vectors encoding cytokines induce differentiation of human dendritic cells and stimulate multivalent immune responses in vitro and in vivo. Vaccine. 2012; 30(34):5118-5131.
  • [21]Salguero G, Sundarasetty BS, Borchers S, Wedekind D, Eiz-Vesper B, Velaga S et al.. Preconditioning therapy with lentiviral vector-programmed dendritic cells accelerates the homeostatic expansion of antigen-reactive human T cells in NOD.Rag1 −/− .IL-2rgammac −/− mice. Hum Gene Ther. 2011; 22(10):1209-1224.
  • [22]Salguero G, Daenthanasanmak A, Munz C, Raykova A, Guzman CA, Riese P et al.. Dendritic cell-mediated immune humanization of mice: implications for allogeneic and xenogeneic stem cell transplantation. J Immunol. 2014.
  • [23]Daenthanasanmak A, Salguero G, Sundarasetty BS, Waskow C, Cosgun KN, Guzman CA et al.. Engineered dendritic cells from cord blood and adult blood accelerate effector T cell immune reconstitution against HCMV. Mol Ther Methods Clin Dev. 2014; 1:14060.
  • [24]Badralmaa Y, Natarajan V. Impact of the DNA extraction method on 2-LTR DNA circle recovery from HIV-1 infected cells. J Virol Methods. 2013; 193(1):184-189.
  • [25]Rothe M, Rittelmeyer I, Iken M, Rudrich U, Schambach A, Glage S et al.. Epidermal growth factor improves lentivirus vector gene transfer into primary mouse hepatocytes. Gene Ther. 2012; 19(4):425-434.
  • [26]Schmidt M, Schwarzwaelder K, Bartholomae C, Zaoui K, Ball C, Pilz I et al.. High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat Methods. 2007; 4(12):1051-1057.
  • [27]Nieda M, Terunuma H, Eiraku Y, Deng X, Nicol AJ. Effective induction of melanoma-antigen-specific CD8+ T cells via Vgamma9gammadeltaT cell expansion by CD56(high+) Interferon-alpha-induced dendritic cells. Exp Dermatol. 2015; 24(1):35-41.
  • [28]Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013; 13(4):227-242.
  • [29]Pincha M, Sundarasetty BS, Salguero G, Gutzmer R, Garritsen H, Macke L et al.. Identity, potency, in vivo viability, and scaling up production of lentiviral vector-induced dendritic cells for melanoma immunotherapy. Hum Gene Ther Method. 2012; 23(1):38-55.
  • [30]Matrai J, Cantore A, Bartholomae CC, Annoni A, Wang W, Acosta-Sanchez A et al.. Hepatocyte-targeted expression by integrase-defective lentiviral vectors induces antigen-specific tolerance in mice with low genotoxic risk. Hepatology. 2011; 53(5):1696-1707.
  • [31]Abel U, Deichmann A, Bartholomae C, Schwarzwaelder K, Glimm H, Howe S et al.. Real-time definition of non-randomness in the distribution of genomic events. PLoS One. 2007; 2(6):e570.
  • [32]Akagi K, Suzuki T, Stephens RM, Jenkins NA, Copeland NG (2004) RTCGD: retroviral tagged cancer gene database. Nucleic Acids Res 32(Database issue):D523–D527. doi:10.1093/nar/gkh013
  • [33]de Ridder J, Uren A, Kool J, Reinders M, Wessels L. Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screens. PLoS Comput Biol. 2006; 2(12):e166.
  • [34]Cattoglio C, Facchini G, Sartori D, Antonelli A, Miccio A, Cassani B et al.. Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood. 2007; 110(6):1770-1778.
  • [35]Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T et al.. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science. 2013; 341(6148):1233158.
  • [36]Merten OW, Charrier S, Laroudie N, Fauchille S, Dugue C, Jenny C et al.. Large-scale manufacture and characterization of a lentiviral vector produced for clinical ex vivo gene therapy application. Hum Gene Ther. 2011; 22(3):343-356.
  • [37]Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C et al.. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott–Aldrich syndrome. Science. 2013; 341(6148):1233151.
  • [38]Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al.. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. New Engl J Med. 2013; 368(16):1509-1518.
  • [39]Porter DL, Kalos M, Zheng Z, Levine B, June C. Chimeric antigen receptor therapy for B-cell malignancies. J Cancer. 2011; 2:331-332.
  • [40]Barr SD, Ciuffi A, Leipzig J, Shinn P, Ecker JR, Bushman FD. HIV integration site selection: targeting in macrophages and the effects of different routes of viral entry. Mol Ther. 2006; 14(2):218-225.
  • [41]Bartholomae CC, Arens A, Balaggan KS, Yanez-Munoz RJ, Montini E, Howe SJ et al.. Lentiviral vector integration profiles differ in rodent postmitotic tissues. Mol Ther. 2011; 19(4):703-710.
  • [42]Manilla P, Rebello T, Afable C, Lu X, Slepushkin V, Humeau LM et al.. Regulatory considerations for novel gene therapy products: a review of the process leading to the first clinical lentiviral vector. Hum Gene Ther. 2005; 16(1):17-25.
  文献评价指标  
  下载次数:57次 浏览次数:18次