期刊论文详细信息
Journal of Hematology & Oncology
The roles of stem cell memory T cells in hematological malignancies
Yangqiu Li3  Gengxin Luo1  Yikai Zhang2  Ling Xu1 
[1] Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou 510632, China;Institute of Hematology, Jinan University, Guangzhou 510632, China;Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, China
关键词: Antigen-specific T cells;    Hematological malignancy;    Adoptive cell therapy;    Stem cell memory T cells;   
Others  :  1233320
DOI  :  10.1186/s13045-015-0214-5
 received in 2015-08-06, accepted in 2015-10-01,  发布年份 2015
PDF
【 摘 要 】

Adoptive cell therapy (ACT) is rapidly migrating from bench to clinical therapy for hematological malignancies. Recently, a new subtype of memory T cells, stem cell memory T (T SCM ) cells, was shown to be one of the most favorable subsets for ACT. T SCMhas high self-renewal capacity and is associated with superior T cell engraftment, persistence, and antitumor immunity. In this review, we focused on the characteristics of antigen-specific T SCMcells and discussed their potential for immunotherapy targeting hematological malignancies.

【 授权许可】

   
2015 Xu et al.

【 预 览 】
附件列表
Files Size Format View
20151119111244266.pdf 630KB PDF download
Fig. 1. 36KB Image download
【 图 表 】

Fig. 1.

【 参考文献 】
  • [1]Ji X, Zhang L, Peng J, Hou M. T cell immune abnormalities in immune thrombocytopenia. J Hematol Oncol. 2014; 7:72. BioMed Central Full Text
  • [2]Muller-Schmah C, Solari L, Weis R, Pfeifer D, Scheibenbogen C, Trepel M, May AM, Engelhardt R, Lubbert M. Immune response as a possible mechanism of long-lasting disease control in spontaneous remission of MLL/AF9-positive acute myeloid leukemia. Ann Hematol. 2012; 91:27-32.
  • [3]Isidori A, Salvestrini V, Ciciarello M, Loscocco F, Visani G, Parisi S, Lecciso M, Ocadlikova D, Rossi L, Gabucci E, Clissa C et al.. The role of the immunosuppressive microenvironment in acute myeloid leukemia development and treatment. Expert Rev Hematol. 2014; 7:807-818.
  • [4]Li Y. T-cell immune suppression in patients with hematologic malignancies: clinical implications. Int J Hematol Oncol. 2014; 3:289-297.
  • [5]Shi L, Chen S, Yang L, Li Y. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J Hematol Oncol. 2013; 6:74. BioMed Central Full Text
  • [6]Li Y, Yin Q, Yang L, Chen S, Geng S, Wu X, Zhong L, Schmidt CA, Przybylski GK. Reduced levels of recent thymic emigrants in acute myeloid leukemia patients. Cancer Immunol Immunother. 2009; 58:1047-1055.
  • [7]Chen S, Huang X, Zheng H, Geng S, Wu X, Yang L, Weng J, Du X, Li Y. The evolution of malignant and reactive gammadelta + T cell clones in a relapse T-ALL case after allogeneic stem cell transplantation. Mol Cancer. 2013; 12:73. BioMed Central Full Text
  • [8]Chen S, Zha X, Yang L, Li B, Liye Z, Li Y. Deficiency of CD3gamma, delta, epsilon, and zeta expression in T cells from AML patients. Hematology. 2011; 16:31-36.
  • [9]Shi L, Chen S, Zha X, Xu Y, Xu L, Yang L, Lu Y, Zhu K, Li Y. Enhancement of the TCRzeta expression, polyclonal expansion, and activation of T cells from patients with acute myeloid leukemia after IL-2, IL-7, and IL-12 induction. DNA Cell Biol. 2015; 34:481-488.
  • [10]Cieri N, Oliveira G, Greco R, Forcato M, Taccioli C, Cianciotti B, Valtolina V, Noviello M, Vago L, Bondanza A, Lunghi F et al.. Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation. Blood. 2015; 125:2865-2874.
  • [11]Gattinoni L, Restifo NP. Moving T memory stem cells to the clinic. Blood. 2013; 121:567-568.
  • [12]Roberto A, Castagna L, Zanon V, Bramanti S, Crocchiolo R, McLaren JE, Gandolfi S, Tentorio P, Sarina B, Timofeeva I, Santoro A et al.. Role of naive-derived T memory stem cells in T-cell reconstitution following allogeneic transplantation. Blood. 2015; 125:2855-2864.
  • [13]Restifo NP, Gattinoni L. Lineage relationship of effector and memory T cells. Curr Opin Immunol. 2013; 25:556-563.
  • [14]Chahroudi A, Silvestri G, Lichterfeld M. T memory stem cells and HIV: a long-term relationship. Curr HIV/AIDS Rep. 2015; 12:33-40.
  • [15]Crotty S, Ahmed R. Immunological memory in humans. Semin Immunol. 2004; 16:197-203.
  • [16]Mateus J, Lasso P, Pavia P, Rosas F, Roa N, Valencia-Hernandez CA, Gonzalez JM, Puerta CJ, Cuellar A. Low frequency of circulating CD8+ T stem cell memory cells in chronic chagasic patients with severe forms of the disease. PLoS Negl Trop Dis. 2015; 9:e3432.
  • [17]Darlak KA, Wang Y, Li JM, Harris WA, Giver CR, Huang C, Waller EK. Host bone marrow-derived IL-12 enhances donor T cell engraftment in a mouse model of bone marrow transplantation. J Hematol Oncol. 2014; 7:16. BioMed Central Full Text
  • [18]Wang L, Xiao H, Zhang X, Wang C, Huang H. The role of telomeres and telomerase in hematologic malignancies and hematopoietic stem cell transplantation. J Hematol Oncol. 2014; 7:61. BioMed Central Full Text
  • [19]Tibes R, Mesa RA. Targeting hedgehog signaling in myelofibrosis and other hematologic malignancies. J Hematol Oncol. 2014; 7:18. BioMed Central Full Text
  • [20]Smith AD, Roda D, Yap TA. Strategies for modern biomarker and drug development in oncology. J Hematol Oncol. 2014; 7:70. BioMed Central Full Text
  • [21]Zhang Y, Joe G, Hexner E, Zhu J, Emerson SG. Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nat Med. 2005; 11:1299-1305.
  • [22]Takeshita M, Suzuki K, Kassai Y, Takiguchi M, Nakayama Y, Otomo Y, Morita R, Miyazaki T, Yoshimura A, Takeuchi T. Polarization diversity of human CD4(+) stem cell memory T cells. Clin Immunol. 2015; 159:107-117.
  • [23]Fuertes Marraco SA, Soneson C, Cagnon L, Gannon PO, Allard M, Abed Maillard S, Montandon N, Rufer N, Waldvogel S, Delorenzi M, Speiser DE. Long-lasting stem cell-like memory CD8+ T cells with a naive-like profile upon yellow fever vaccination. Sci Transl Med. 2015; 7:282ra248.
  • [24]Crompton JG, Narayanan M, Cuddapah S, Roychoudhuri R, Ji Y, Yang W, et al. Lineage relationship of CD8 T cell subsets is revealed by progressive changes in the epigenetic landscape. Cell Mol Immunol 2015;doi:10.1038/cmi.2015.032.
  • [25]Mahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur J Immunol. 2013; 43:2797-2809.
  • [26]Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, Almeida JR, Gostick E, Yu Z, Carpenito C, Wang E et al.. A human memory T cell subset with stem cell-like properties. Nat Med. 2011; 17:1290-1297.
  • [27]Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z, Wrzesinski C, Boni A, Cassard L, Garvin LM, Paulos CM et al.. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med. 2009; 15:808-813.
  • [28]Lugli E, Dominguez MH, Gattinoni L, Chattopadhyay PK, Bolton DL, Song K, Klatt NR, Brenchley JM, Vaccari M, Gostick E, Price DA et al.. Superior T memory stem cell persistence supports long-lived T cell memory. J Clin Invest. 2013; 123:594-599.
  • [29]Palmer DC, Restifo NP. Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol. 2009; 30:592-602.
  • [30]Cieri N, Camisa B, Cocchiarella F, Forcato M, Oliveira G, Provasi E, Bondanza A, Bordignon C, Peccatori J, Ciceri F, Lupo-Stanghellini MT et al.. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood. 2013; 121:573-584.
  • [31]Schmueck-Henneresse M, Sharaf R, Vogt K, Weist BJ, Landwehr-Kenzel S, Fuehrer H, Jurisch A, Babel N, Rooney CM, Reinke P, Volk HD. Peripheral blood-derived virus-specific memory stem T cells mature to functional effector memory subsets with self-renewal potency. J Immunol. 2015; 194:5559-5567.
  • [32]Di Benedetto S, Derhovanessian E, Steinhagen-Thiessen E, Goldeck D, Muller L, Pawelec G. Impact of age, sex and CMV-infection on peripheral T cell phenotypes: results from the Berlin BASE-II Study. Biogerontology. 2015; 16:631-43.
  • [33]Vigano S, Negron J, Ouyang Z, Rosenberg ES, Walker BD, Lichterfeld M, Yu XG. Prolonged antiretroviral therapy preserves HIV-1-specific CD8 T cells with stem cell-like properties. J Virol. 2015; 89:7829-7840.
  • [34]Buzon MJ, Martin-Gayo E, Pereyra F, Ouyang Z, Sun H, Li JZ, Piovoso M, Shaw A, Dalmau J, Zangger N, Martinez-Picado J et al.. Long-term antiretroviral treatment initiated at primary HIV-1 infection affects the size, composition, and decay kinetics of the reservoir of HIV-1-infected CD4 T cells. J Virol. 2014; 88:10056-10065.
  • [35]Nagai Y, Kawahara M, Hishizawa M, Shimazu Y, Sugino N, Fujii S, Kadowaki N, Takaori-Kondo A. T memory stem cells are the hierarchical apex of adult T-cell leukemia. Blood. 2015; 125:3527-3535.
  • [36]Klatt NR, Bosinger SE, Peck M, Richert-Spuhler LE, Heigele A, Gile JP, Patel N, Taaffe J, Julg B, Camerini D, Torti C et al.. Limited HIV infection of central memory and stem cell memory CD4+ T cells is associated with lack of progression in viremic individuals. PLoS Pathog. 2014; 10:e1004345.
  • [37]Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014; 14:135-146.
  • [38]Martin PJ. Reversing CD8+ T-cell exhaustion with DLI. Blood. 2014; 123:1289-1290.
  • [39]Biasco L, Scala S, Basso Ricci L, Dionisio F, Baricordi C, Calabria A, Giannelli S, Cieri N, Barzaghi F, Pajno R, Al-Mousa H et al.. In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells. Sci Transl Med. 2015; 7:273ra213.
  • [40]Han EQ, Li XL, Wang CR, Li TF, Han SY. Chimeric antigen receptor-engineered T cells for cancer immunotherapy: progress and challenges. J Hematol Oncol. 2013; 6:47. BioMed Central Full Text
  • [41]van der Waart AB, van de Weem NM, Maas F, Kramer CS, Kester MG, Falkenburg JH, Schaap N, Jansen JH, van der Voort R, Gattinoni L, Hobo W et al.. Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy. Blood. 2014; 124:3490-3500.
  • [42]van der Waart AB, Hobo W, Dolstra H. Time to Akt: superior tumor-reactive T cells for adoptive immunotherapy. Oncoimmunology. 2015; 4:e1003016.
  • [43]Akinleye A, Avvaru P, Furqan M, Song Y, Liu D. Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J Hematol Oncol. 2013; 6:88. BioMed Central Full Text
  • [44]Breton CS, Nahimana A, Aubry D, Macoin J, Moretti P, Bertschinger M, Hou S, Duchosal MA, Back J. A novel anti-CD19 monoclonal antibody (GBR 401) with high killing activity against B cell malignancies. J Hematol Oncol. 2014; 7:33. BioMed Central Full Text
  • [45]Akinleye A, Chen Y, Mukhi N, Song Y, Liu D. Ibrutinib and novel BTK inhibitors in clinical development. J Hematol Oncol. 2013; 6:59. BioMed Central Full Text
  • [46]Novero A, Ravella PM, Chen Y, Dous G, Liu D. Ibrutinib for B cell malignancies. Exp Hematol Oncol. 2014; 3:4. BioMed Central Full Text
  • [47]Suresh T, Lee LX, Joshi J, Barta SK. New antibody approaches to lymphoma therapy. J Hematol Oncol. 2014; 7:58. BioMed Central Full Text
  文献评价指标  
  下载次数:5次 浏览次数:33次