期刊论文详细信息
Journal of Neuroinflammation
NOV/CCN3 attenuates inflammatory pain through regulation of matrix metalloproteinases-2 and -9
Cécile Martinerie3  Stéphane Melik-Parsadaniantz3  Patrick Kitabgi3  Michel Pohl3  Maryvonne Laurent3  Claire Calmel3  Brigitte Lelongt3  Cyril Rivat2  Lara Kular1 
[1] INSERM UMR_S 975; CNRS UMR 7225, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris F-75013, France;Department of Anesthesiology and Pain Medicine, Health Sciences RR415, 1959 NE Pacific Street, Seattle, WA, USA;Université Pierre et Marie Curie 6, Paris, France
关键词: Allodynia;    MMP-9;    MMP-2;    CCL2;    TNF-alpha;    IL-1beta;    Neuroinflammation;    Inflammatory pain;    NOV/CCN3;   
Others  :  1212786
DOI  :  10.1186/1742-2094-9-36
 received in 2011-09-20, accepted in 2012-02-21,  发布年份 2012
PDF
【 摘 要 】

Background

Sustained neuroinflammation strongly contributes to the pathogenesis of pain. The clinical challenge of chronic pain relief led to the identification of molecules such as cytokines, chemokines and more recently matrix metalloproteinases (MMPs) as putative therapeutic targets. Evidence points to a founder member of the matricial CCN family, NOV/CCN3, as a modulator of these inflammatory mediators. We thus investigated the possible involvement of NOV in a preclinical model of persistent inflammatory pain.

Methods

We used the complete Freund's adjuvant (CFA)-induced model of persistent inflammatory pain and cultured primary sensory neurons for in vitro experiments. The mRNA expression of NOV and pro-inflammatory factors were measured with real-time quantitative PCR, CCL2 protein expression was assessed using ELISA, MMP-2 and -9 activities using zymography. The effect of drugs on tactile allodynia was evaluated by the von Frey test.

Results

NOV was expressed in neurons of both dorsal root ganglia (DRG) and dorsal horn of the spinal cord (DHSC). After intraplantar CFA injection, NOV levels were transiently and persistently down-regulated in the DRG and DHSC, respectively, occurring at the maintenance phase of pain (15 days). NOV-reduced expression was restored after treatment of CFA rats with dexamethasone. In vitro, results based on cultured DRG neurons showed that siRNA-mediated inhibition of NOV enhanced IL-1β- and TNF-α-induced MMP-2, MMP-9 and CCL2 expression whereas NOV addition inhibited TNF-α-induced MMP-9 expression through β1 integrin engagement. In vivo, the intrathecal delivery of MMP-9 inhibitor attenuated mechanical allodynia of CFA rats. Importantly, intrathecal administration of NOV siRNA specifically led to an up-regulation of MMP-9 in the DRG and MMP-2 in the DHSC concomitant with increased mechanical allodynia. Finally, NOV intrathecal treatment specifically abolished the induction of MMP-9 in the DRG and, MMP-9 and MMP-2 in the DHSC of CFA rats. This inhibitory effect on MMP is associated with reduced mechanical allodynia.

Conclusions

This study identifies NOV as a new actor against inflammatory pain through regulation of MMPs thus uncovering NOV as an attractive candidate for therapeutic improvement in pain relief.

【 授权许可】

   
2012 Kular et al; BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150614104127922.pdf 3595KB PDF download
Figure 10. 77KB Image download
Figure 9. 64KB Image download
Figure 8. 57KB Image download
Figure 7. 42KB Image download
Figure 6. 76KB Image download
Figure 5. 59KB Image download
Figure 4. 54KB Image download
Figure 3. 45KB Image download
Figure 2. 102KB Image download
Figure 1. 84KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Uceyler N, Schafers M, Sommer C: Mode of action of cytokines on nociceptive neurons. Exp Brain Res 2009, 196:67-78.
  • [2]Miller RJ, Jung H, Bhangoo SK, White FA: Cytokine and chemokine regulation of sensory neuron function. Handb Exp Pharmacol 2009, 194:417-449.
  • [3]Abbadie C, Bhangoo S, De Koninck Y, Malcangio M, Melik-Parsadaniantz S, White FA: Chemokines and pain mechanisms. Brain Res Rev 2009, 60:125-134.
  • [4]Kawasaki Y, Zhang L, Cheng JK, Ji RR: Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 2008, 28:5189-5194.
  • [5]Van Steenwinckel J, Reaux-Le Goazigo A, Pommier B, Mauborgne A, Dansereau MA, Kitabgi P, Sarret P, Pohl M, Melik Parsadaniantz S: CCL2 released from neuronal synaptic vesicles in the spinal cord is a major mediator of local inflammation and pain after peripheral nerve injury. J Neurosci 2011, 31:5865-5875.
  • [6]Shubayev VI, Myers RR: Upregulation and interaction of TNFalpha and gelatinases A and B in painful peripheral nerve injury. Brain Res 2000, 855:83-89.
  • [7]Komori K, Nonaka T, Okada A, Kinoh H, Hayashita-Kinoh H, Yoshida N, Yana I, Seiki M: Absence of mechanical allodynia and Abeta-fiber sprouting after sciatic nerve injury in mice lacking membrane-type 5 matrix metalloproteinase. FEBS Lett 2004, 557:125-128.
  • [8]Chattopadhyay S, Myers RR, Janes J, Shubayev V: Cytokine regulation of MMP-9 in peripheral glia: implications for pathological processes and pain in injured nerve. Brain Behav Immun 2007, 21:561-568.
  • [9]Kobayashi H, Chattopadhyay S, Kato K, Dolkas J, Kikuchi S, Myers RR, Shubayev VI: MMPs initiate Schwann cell-mediated MBP degradation and mechanical nociception after nerve damage. Mol Cell Neurosci 2008, 39:619-627.
  • [10]Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, Gao YJ, Roy K, Corfas G, Lo EH, Ji RR: Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med 2008, 14:331-336.
  • [11]Liu WT, Han Y, Liu YP, Song AA, Barnes B, Song XJ: Spinal matrix metalloproteinase-9 contributes to physical dependence on morphine in mice. J Neurosci 2010, 30:7613-7623.
  • [12]Joliot V, Martinerie C, Dambrine G, Plassiart G, Brisac M, Crochet J, Perbal B: Proviral rearrangements and overexpression of a new cellular gene (nov) in myeloblastosis-associated virus type 1-induced nephroblastomas. Mol Cell Biol 1992, 12:10-21.
  • [13]Chen CC, Lau LF: Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 2009, 41:771-783.
  • [14]Albrecht C, von Der Kammer H, Mayhaus M, Klaudiny J, Schweizer M, Nitsch RM: Muscarinic acetylcholine receptors induce the expression of the immediate early growth regulatory gene CYR61. J Biol Chem 2000, 275:28929-28936.
  • [15]Su BY, Cai WQ, Zhang CG, Martinez V, Lombet A, Perbal B: The expression of ccn3 (nov) RNA and protein in the rat central nervous system is developmentally regulated. Mol Pathol 2001, 54:184-191.
  • [16]Kocialkowski S, Yeger H, Kingdom J, Perbal B, Schofield PN: Expression of the human NOV gene in first trimester fetal tissues. Anat Embryol (Berl) 2001, 203:417-427.
  • [17]Thibout H, Martinerie C, Creminon C, Godeau F, Boudou P, Le Bouc Y, Laurent M: Characterization of human NOV in biological fluids: an enzyme immunoassay for the quantification of human NOV in sera from patients with diseases of the adrenal gland and of the nervous system. J Clin Endocrinol Metab 2003, 88:327-336.
  • [18]Le Dreau G, Nicot A, Benard M, Thibout H, Vaudry D, Martinerie C, Laurent M: NOV/CCN3 promotes maturation of cerebellar granule neuron precursors. Mol Cell Neurosci 2010, 43:60-71.
  • [19]Lin CG, Chen CC, Leu SJ, Grzeszkiewicz TM, Lau LF: Integrin-dependent functions of the angiogenic inducer NOV (CCN3): implication in wound healing. J Biol Chem 2005, 280:8229-8237.
  • [20]Laurent M, Martinerie C, Thibout H, Hoffman M, Verrecchia F, Le Bouc Y, Mauviel A, Kleinman H: NOVH increases MMP3 expression and cell migration in glioblastoma cells via a PDGFR-alpha-dependent mechanism. FASEB J 2003, 17:1919-1921.
  • [21]Benini S, Perbal B, Zambelli D, Colombo MP, Manara MC, Serra M, Parenza M, Martinez V, Picci P, Scotlandi K: In Ewing's sarcoma CCN3(NOV) inhibits proliferation while promoting migration and invasion of the same cell type. Oncogene 2005, 24:4349-4361.
  • [22]Fukunaga-Kalabis M, Martinez G, Telson SM, Liu ZJ, Balint K, Juhasz I, Elder DE, Perbal B, Herlyn M: Downregulation of CCN3 expression as a potential mechanism for melanoma progression. Oncogene 2008, 27:2552-2560.
  • [23]Tzeng HE, Chen JC, Tsai CH, Kuo CC, Hsu HC, Hwang WL, Fong YC, Tang CH: CCN3 increases cell motility and MMP-13 expression in human chondrosarcoma through integrin dependent pathway. J Cell Physiol 2011, 226:3181-3189.
  • [24]Lin Z, Natesan V, Shi H, Hamik A, Kawanami D, Hao C, Mahabaleshwar GH, Wang W, Jin ZG, Atkins GB, Firth SM, Rittié L, Perbal B, Jain MK: A novel role of CCN3 in regulating endothelial inflammation. J Cell Commun Signal 2010, 4:141-153.
  • [25]Kular L, Pakradouni J, Kitabgi P, Laurent M, Martinerie C: The CCN family: A new class of inflammation modulators? Biochimie 2011, 93:377-388.
  • [26]Le Dreau G, Kular L, Nicot AB, Calmel C, Melik-Parsadaniantz S, Kitabgi P, Laurent M, Martinerie C: NOV/CCN3 upregulates CCL2 and CXCL1 expression in astrocytes through beta1 and beta5 integrins. Glia 2010, 58:1510-1521.
  • [27]Dansereau MA, Gosselin RD, Pohl M, Pommier B, Mechighel P, Mauborgne A, Rostene W, Kitabgi P, Beaudet N, Sarret P, Melik-Parsadaniantz S: Spinal CCL2 pronociceptive action is no longer effective in CCR2 receptor antagonist-treated rats. J Neurochem 2008, 106:757-769.
  • [28]Doghman M, Arhatte M, Thibout H, Rodrigues G, De Moura J, Grosso S, West AN, Laurent M, Mas JC, Bongain A, Zambetti GP, Figueiredo BC, Auberger P, Martinerie C, Lalli E: Nephroblastoma overexpressed/cysteine-rich protein 61/connective tissue growth factor/nephroblastoma overexpressed gene-3 (NOV/CCN3), a selective adrenocortical cell proapoptotic factor, is down-regulated in childhood adrenocortical tumors. J Clin Endocrinol Metab 2007, 92:3253-3260.
  • [29]Luo MC, Zhang DQ, Ma SW, Huang YY, Shuster SJ, Porreca F, Lai J: An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons. Mol Pain 2005, 1:29. BioMed Central Full Text
  • [30]Eguchi A, Meade BR, Chang YC, Fredrickson CT, Willert K, Puri N, Dowdy SF: Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat Biotechnol 2009, 27:567-571.
  • [31]Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL: Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53:55-63.
  • [32]Dixon WJ: Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 1980, 20:441-462.
  • [33]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29:e45.
  • [34]Lam FF, Ng ES: Substance P and glutamate receptor antagonists improve the anti-arthritic actions of dexamethasone in rats. Br J Pharmacol 2010, 159:958-969.
  • [35]Liu C, Liu XJ, Crowe PD, Kelner GS, Fan J, Barry G, Manu F, Ling N, De Souza EB, Maki RA: Nephroblastoma overexpressed gene (NOV) codes for a growth factor that induces protein tyrosine phosphorylation. Gene 1999, 238:471-478.
  • [36]Calderwood DA: Integrin activation. J Cell Sci 2004, 117:657-666.
  • [37]Raghavendra V, Tanga FY, DeLeo JA: Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur J Neurosci 2004, 20:467-473.
  • [38]Rosenberg GA: Matrix metalloproteinases in neuroinflammation. Glia 2002, 39:279-291.
  • [39]Chen CC, Young JL, Monzon RI, Chen N, Todorovic V, Lau LF: Cytotoxicity of TNFalpha is regulated by integrin-mediated matrix signaling. EMBO J 2007, 26:1257-1267.
  • [40]Chen CC, Lau LF: Deadly liaisons: fatal attraction between CCN matricellular proteins and the tumor necrosis factor family of cytokines. J Cell Commun Signal 2010, 4:63-69.
  • [41]Hynes RO: Integrins: bidirectional, allosteric signaling machines. Cell 2002, 110:673-687.
  • [42]Dina OA, Parada CA, Yeh J, Chen X, McCarter GC, Levine JD: Integrin signaling in inflammatory and neuropathic pain in the rat. Eur J Neurosci 2004, 19:634-642.
  • [43]Fu WM, Chang TK, Sun WZ, Ling QD, Peng HC, Liou HC, Lu DY, Huang TF: Inhibition of neuropathic pain by a potent disintegrin-triflavin. Neurosci Lett 2004, 368:263-268.
  • [44]Tsuda M, Toyomitsu E, Komatsu T, Masuda T, Kunifusa E, Nasu-Tada K, Koizumi S, Yamamoto K, Ando J, Inoue K: Fibronectin/integrin system is involved in P2X(4) receptor upregulation in the spinal cord and neuropathic pain after nerve injury. Glia 2008, 56:579-585.
  • [45]Lemons ML, Condic ML: Combined integrin activation and intracellular cAMP cause Rho GTPase dependent growth cone collapse on laminin-1. Exp Neurol 2006, 202:324-335.
  • [46]Lemons ML, Condic ML: Integrin signaling is integral to regeneration. Exp Neurol 2008, 209:343-352.
  • [47]Dina OA, Hucho T, Yeh J, Malik-Hall M, Reichling DB, Levine JD: Primary afferent second messenger cascades interact with specific integrin subunits in producing inflammatory hyperalgesia. Pain 2005, 115:191-203.
  • [48]Shimoyama T, Hiraoka S, Takemoto M, Koshizaka M, Tokuyama H, Tokuyama T, Watanabe A, Fujimoto M, Kawamura H, Sato S, Tsurutani Y, Saito Y, Perbal B, Koseki H, Yokote K: CCN3 inhibits neointimal hyperplasia through modulation of smooth muscle cell growth and migration. Arterioscler Thromb Vasc Biol 2010, 30:675-682.
  • [49]Narita M, Shimamura M, Imai S, Kubota C, Yajima Y, Takagi T, Shiokawa M, Inoue T, Suzuki M, Suzuki T: Role of interleukin-1beta and tumor necrosis factor-alpha-dependent expression of cyclooxygenase-2 mRNA in thermal hyperalgesia induced by chronic inflammation in mice. Neuroscience 2008, 152:477-486.
  • [50]Gao YJ, Zhang L, Samad OA, Suter MR, Yasuhiko K, Xu ZZ, Park JY, Lind AL, Ma Q, Ji RR: JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci 2009, 29:4096-4108.
  • [51]Nagakura Y, Okada M, Kohara A, Kiso T, Toya T, Iwai A, Wanibuchi F, Yamaguchi T: Allodynia and hyperalgesia in adjuvant-induced arthritic rats: time course of progression and efficacy of analgesics. J Pharmacol Exp Ther 2003, 306:490-497.
  • [52]Bertorelli R, Corradini L, Rafiq K, Tupper J, Calo G, Ongini E: Nociceptin and the ORL-1 ligand [Phe1psi (CH2-NH)Gly2]nociceptin(1-13)NH2 exert anti-opioid effects in the Freund's adjuvant-induced arthritic rat model of chronic pain. Br J Pharmacol 1999, 128:1252-1258.
  • [53]Burgess GM, Perkins MN, Rang HP, Campbell EA, Brown MC, McIntyre P, Urban L, Dziadulewicz EK, Ritchie TJ, Hallett A, Snell CR, Wrigglesworth R, Lee W, Davis C, Phagoo SB, Davis AJ, Phillips E, Drake GS, Hughes GA, Dunstan A, Bloomfield GC: Bradyzide, a potent non-peptide B(2) bradykinin receptor antagonist with long-lasting oral activity in animal models of inflammatory hyperalgesia. Br J Pharmacol 2000, 129:77-86.
  • [54]Gao YJ, Xu ZZ, Liu YC, Wen YR, Decosterd I, Ji RR: The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition. Pain 2010, 148:309-319.
  • [55]Schaible HG, Schmelz M, Tegeder I: Pathophysiology and treatment of pain in joint disease. Adv Drug Deliv Rev 2006, 58:323-342.
  • [56]Dev R, Srivastava PK, Iyer JP, Dastidar SG, Ray A: Therapeutic potential of matrix metalloprotease inhibitors in neuropathic pain. Expert Opin Investig Drugs 2010, 19:455-468.
  文献评价指标  
  下载次数:41次 浏览次数:25次