期刊论文详细信息
Journal of Translational Medicine
Extracellular matrix production in vitro in cartilage tissue engineering
Daping Wang1  Jianyi Xiong1  Weimin Zhu1  Li Duan1  Jie-Lin Chen1 
[1] Department of Orthopedics, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
关键词: Collagen type II;    Extracellular matrix;    Tissue engineering;    Cartilage;   
Others  :  815146
DOI  :  10.1186/1479-5876-12-88
 received in 2013-12-04, accepted in 2014-03-31,  发布年份 2014
PDF
【 摘 要 】

Cartilage tissue engineering is arising as a technique for the repair of cartilage lesions in clinical applications. However, fibrocartilage formation weakened the mechanical functions of the articular, which compromises the clinical outcomes. Due to the low proliferation ability, dedifferentiation property and low production of cartilage-specific extracellular matrix (ECM) of the chondrocytes, the cartilage synthesis in vitro has been one of the major limitations for obtaining high-quality engineered cartilage constructs. This review discusses cells, biomaterial scaffolds and stimulating factors that can facilitate the cartilage-specific ECM production and accumulation in the in vitro culture system. Special emphasis has been put on the factors that affect the production of ECM macromolecules such as collagen type II and proteoglycans in the review, aiming at providing new strategies to improve the quality of tissue-engineered cartilage.

【 授权许可】

   
2014 Chen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710055446660.pdf 474KB PDF download
Figure 1. 71KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Jiang YZ, Zhang SF, Qi YY, Wang LL, Ouyang HW: Cell transplantation for articular cartilage defects: principles of past, present, and future practice. Cell Transplant 2011, 20:593-607.
  • [2]Kon E, Filardo G, Di Martino A, Marcacci M: ACI and MACI. J Knee Surg 2012, 25:17-22.
  • [3]Chung C, Burdick JA: Engineering cartilage tissue. Adv Drug Deliv Rev 2008, 60:243-262.
  • [4]Huang AH, Farrell MJ, Mauck RL: Mechanics and mechanobiology of mesenchymal stem cell-based engineered cartilage. J Biomech 2010, 43:128-136.
  • [5]Mahmoudifar N, Doran PM: Chondrogenesis and cartilage tissue engineering: the longer road to technology development. Trends Biotechnol 2012, 30:166-176.
  • [6]Dunkelman NS, Zimber MP, Lebaron RG, Pavelec R, Kwan M, Purchio AF: Cartilage production by rabbit articular chondrocytes on polyglycolic acid scaffolds in a closed bioreactor system. Biotechnol Bioeng 1995, 46:299-305.
  • [7]Shahin K, Doran PM: Strategies for enhancing the accumulation and retention of extracellular matrix in tissue-engineered cartilage cultured in bioreactors. PLoS One 2011, 6:e23119.
  • [8]Mahmoudifar N, Doran PM: Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. Biomaterials 2010, 31:3858-3867.
  • [9]Sakaguchi Y, Sekiya I, Yagishita K, Muneta T: Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005, 52:2521-2529.
  • [10]Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I: Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 2007, 327:449-462.
  • [11]Vinardell T, Sheehy EJ, Buckley CT, Kelly DJ: A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Tissue Eng Part A 2012, 18:1161-1170.
  • [12]Benya PD, Padilla SR, Nimni ME: Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell 1978, 15:1313-1321.
  • [13]Hamada T, Sakai T, Hiraiwa H, Nakashima M, Ono Y, Mitsuyama H, Ishiguro N: Surface markers and gene expression to characterize the differentiation of monolayer expanded human articular chondrocytes. J Med Sci 2013, 75:101-111.
  • [14]Ando W, Fujie H, Moriguchi Y, Nansai R, Shimomura K, Hart DA, Yoshikawa H, Nakamura N: Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells. Eur Cell Mater 2012, 24:292-307.
  • [15]Saha S, Kirkham J, Wood D, Curran S, Yang XB: Informing future cartilage repair strategies: a comparative study of three different human cell types for cartilage tissue engineering. Cell Tissue Res 2013, 352:495-507.
  • [16]Grogan SP, Barbero A, Diaz-Romero J, Cleton-Jansen AM, Soeder S, Whiteside R, Hogendoorn PC, Farhadi J, Aigner T, Martin I, Mainil-Varlet P: Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity. Arthritis Rheum 2007, 56:586-595.
  • [17]Forsey RW, Tare R, Oreffo RO, Chaudhuri JB: Perfusion bioreactor studies of chondrocyte growth in alginate-chitosan capsules. Biotechnol Appl Biochem 2012, 59:142-152.
  • [18]Diekman BO, Christoforou N, Willard VP, Sun H, Sanchez-Adams J, Leong KW, Guilak F: Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci U S A 2012, 109:19172-19177.
  • [19]Henrotin YE, Deberg MA, Crielaard JM, Piccardi N, Msika P, Sanchez C: Avocado/soybean unsaponifiables prevent the inhibitory effect of osteoarthritic subchondral osteoblasts on aggrecan and type II collagen synthesis by chondrocytes. J Rheumatol 2006, 33:1668-1678.
  • [20]Madry H, Kaul G, Cucchiarini M, Stein U, Zurakowski D, Remberger K, Menger MD, Kohn D, Trippel SB: Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther 2005, 12:1171-1179.
  • [21]Garza-Veloz I, Romero-Diaz VJ, Martinez-Fierro ML, Marino-Martinez IA, Gonzalez-Rodriguez M, Martinez-Rodriguez HG, Espinoza-Juarez MA, Bernal-Garza D, Ortiz-Lopez R, Rojas-Martinez A: Analyses of chondrogenic induction of adipose mesenchymal stem cells by combined co-stimulation mediated by adenoviral gene transfer. Arthritis Res Ther 2013, 15:R80(81–13).
  • [22]Enochson L, Brittberg M, Lindahl A: Optimization of a chondrogenic medium through the use of factorial design of experiments. BioRes Open Access 2012, 1:306-313.
  • [23]Giannoni P, Pagano A, Maggi E, Arbico R, Randazzo N, Grandizio M, Cancedda R, Dozin B: Autologous chondrocyte implantation (ACI) for aged patients: development of the proper cell expansion conditions for possible therapeutic applications. Osteoarthritis Cartilage 2005, 13:589-600.
  • [24]Shao XX, Duncan NA, Lin L, Fu X, Zhang JY, Yu CL: Serum-free media for articular chondrocytes in vitro expansion. Chin Med J 2013, 126:2523-2529.
  • [25]Petrera M, De Croos JN, Iu J, Hurtig M, Kandel RA, Theodoropoulos JS: Supplementation with platelet-rich plasma improves the in vitro formation of tissue-engineered cartilage with enhanced mechanical properties. Arthroscopy 2013, 29:1685-1692.
  • [26]Barbero A, Grogan SP, Mainil-Varlet P, Martin I: Expansion on specific substrates regulates the phenotype and differentiation capacity of human articular chondrocytes. Cell Biochem 2006, 98:1140-1149.
  • [27]Rutgers M, Saris DB, Vonk LA, van Rijen MH, Akrum V, Langeveld D, van Boxtel A, Dhert WJ, Creemers LB: Effect of collagen type I or type II on chondrogenesis by cultured human articular chondrocytes. Tissue Eng Part A 2013, 19:59-65.
  • [28]Yasuda T, Poole AR: A fibronectin fragment induces type II collagen degradation by collagenase through an interleukin-1-mediated pathway. Arthritis Rheum 2002, 46:138-148.
  • [29]Grogan SP, Chen X, Sovani S, Taniguchi N, Colwell CW Jr, Lotz M, D’Lima D: Influence of cartilage extracellular matrix molecules on cell phenotype and neocartilage formation. Tissue Eng Part A 2013, 20:264-274.
  • [30]Kaitainen S, Mahonen AJ, Lappalainen R, Kroger H, Lammi MJ, Qu C: TiO2 coating promotes human mesenchymal stem cell proliferation without the loss of their capacity for chondrogenic differentiation. Biofabrication 2013, 5:025009.
  • [31]Meretoja VV, Dahlin RL, Wright S, Kasper FK, Mikos AG: The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds. Biomaterials 2013, 34:4266-4273.
  • [32]Vats A, Bielby RC, Tolley N, Dickinson SC, Boccaccini AR, Hollander AP, Bishop AE, Polak JM: Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Eng 2006, 12:1687-1697.
  • [33]Qu C, Puttonen KA, Lindeberg H, Ruponen M, Hovatta O, Koistinaho J, Lammi MJ: Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture. Int J Biochem Cell Biol 2013, 45:1802-1812.
  • [34]Mo XT, Guo SC, Xie HQ, Deng L, Zhi W, Xiang Z, Li XQ, Yang ZM: Variations in the ratios of co-cultured mesenchymal stem cells and chondrocytes regulate the expression of cartilaginous and osseous phenotype in alginate constructs. Bone 2009, 45:42-51.
  • [35]Yang YH, Lee AJ, Barabino GA: Coculture-driven mesenchymal stem cell-differentiated articular chondrocyte-like cells support neocartilage development. Stem Cell Transl Med 2012, 1:843-854.
  • [36]Mafi P, Hindocha S, Mafi R, Khan WS: Evaluation of biological protein-based collagen scaffolds in cartilage and musculoskeletal tissue engineering–a systematic review of the literature. Curr Stem Cell Res Ther 2012, 7:302-309.
  • [37]Iwasa J, Engebretsen L, Shima Y, Ochi M: Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc 2009, 17:561-577.
  • [38]Zheng MH, Willers C, Kirilak L, Yates P, Xu J, Wood D, Shimmin A: Matrix-induced autologous chondrocyte implantation (MACI): biological and histological assessment. Tissue Eng 2007, 13:737-746.
  • [39]Legendre F, Ollitrault D, Hervieu M, Bauge C, Maneix L, Goux D, Chajra H, Mallein-Gerin F, Boumediene K, Galera P, Demoor M: Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia. Tissue Eng Part C Methods 2013, 19:550-567.
  • [40]Willers C, Chen J, Wood D, Xu J, Zheng MH: Autologous chondrocyte implantation with collagen bioscaffold for the treatment of osteochondral defects in rabbits. Tissue Eng 2005, 11:1065-1076.
  • [41]Chen WC, Yao CL, Wei YH, Chu IM: Evaluating osteochondral defect repair potential of autologous rabbit bone marrow cells on type II collagen scaffold. Cytotechnology 2011, 63:13-23.
  • [42]Lee CR, Grad S, Gorna K, Gogolewski S, Goessl A, Alini M: Fibrin-polyurethane composites for articular cartilage tissue engineering: a preliminary analysis. Tissue Eng 2005, 11:1562-1573.
  • [43]Endres M, Neumann K, Zhou B, Freymann U, Pretzel D, Stoffel M, Kinne RW, Kaps C: An ovine in vitro model for chondrocyte-based scaffold-assisted cartilage grafts. J Orthop Trauma Res 2012, 7:1-14.
  • [44]Nair LS, Laurencin CT: Biodegradable polymers as biomaterials. Prog Polym Sci 2007, 32:762-798.
  • [45]Hsu SH, Chang SH, Yen HJ, Whu SW, Tsai CL, Chen DC: Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-Asp as tissue engineering scaffolding materials for cartilage regeneration. Artif Organs 2006, 30:42-55.
  • [46]Lu H, Ko YG, Kawazoe N, Chen G: Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges. Biomed Mater 2011, 6:045011.
  • [47]Yoo HS, Lee EA, Yoon JJ, Park TG: Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials 2005, 26:1925-1933.
  • [48]Shen H, Hu X, Bei J, Wang S: The immobilization of basic fibroblast growth factor on plasma-treated poly(lactide-co-glycolide). Biomaterials 2008, 29:2388-2399.
  • [49]Zhang XQ, Tang H, Hoshi R, De Laporte L, Qiu H, Xu X, Shea LD, Ameer GA: Sustained transgene expression via citric acid-based polyester elastomers. Biomaterials 2009, 30:2632-2641.
  • [50]Park JS, Yang HN, Woo DG, Jeon SY, Park KH: SOX9 gene plus heparinized TGF-beta 3 coated dexamethasone loaded PLGA microspheres for inducement of chondrogenesis of hMSCs. Biomaterials 2012, 33:7151-7163.
  • [51]Salinas CN, Cole BB, Kasko AM, Anseth KS: Chondrogenic differentiation potential of human mesenchymal stem cells photoencapsulated within poly(ethylene glycol)-arginine-glycine-aspartic acid-serine thiol-methacrylate mixed-mode networks. Tissue Eng 2007, 13:1025-1034.
  • [52]Ma K, Wu Y, Wang B, Yang S, Wei Y, Shao Z: Effect of a synthetic link N peptide nanofiber scaffold on the matrix deposition of aggrecan and type II collagen in rabbit notochordal cells. J Mater Sci Mater Med 2013, 24:405-415.
  • [53]Rosenzweig DH, Chicatun F, Nazhat SN, Quinn TM: Cartilaginous constructs using primary chondrocytes from continuous expansion culture seeded in dense collagen gels. Acta Biomater 2013, 9:9360-9369.
  • [54]Benders KE, van Weeren PR, Badylak SF, Saris DB, Dhert WJ, Malda J: Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol 2013, 31:169-176.
  • [55]Yang Q, Peng J, Guo Q, Huang J, Zhang L, Yao J, Yang F, Wang S, Xu W, Wang A, Lu S: A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials 2008, 29:2378-2387.
  • [56]Jin CZ, Park SR, Choi BH, Park K, Min BH: In vivo cartilage tissue engineering using a cell-derived extracellular matrix scaffold. Artif Organs 2007, 31:183-192.
  • [57]Schwarz S, Elsaesser AF, Koerber L, Goldberg-Bockhorn E, Seitz AM, Bermueller C, Durselen L, Ignatius A, Breiter R, Rotter N: Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function. J Tissue Eng Regen Med 2012. doi:10.1002/term.1650
  • [58]Gooch KJ, Kwon JH, Blunk T, Langer R, Freed LE, Vunjak-Novakovic G: Effects of mixing intensity on tissue-engineered cartilage. Biotechnol Bioeng 2001, 72:402-407.
  • [59]Chadjichristos C, Ghayor C, Herrouin JF, Ala-Kokko L, Suske G, Pujol JP, Galera P: Down-regulation of human type II collagen gene expression by transforming growth factor-beta 1 (TGF-beta 1) in articular chondrocytes involves SP3/SP1 ratio. J Biol Chem 2002, 277:43903-43917.
  • [60]Galera P, Redini F, Vivien D, Bonaventure J, Penfornis H, Loyau G, Pujol JP: Effect of transforming growth factor-beta 1 (TGF-beta 1) on matrix synthesis by monolayer cultures of rabbit articular chondrocytes during the dedifferentiation process. Exp Cell Res 1992, 200:379-392.
  • [61]Galera P, Vivien D, Pronost S, Bonaventure J, Redini F, Loyau G, Pujol JP: Transforming growth factor-beta 1 (TGF-beta 1) up-regulation of collagen type II in primary cultures of rabbit articular chondrocytes (RAC) involves increased mRNA levels without affecting mRNA stability and procollagen processing. J Cell Physiol 1992, 153:596-606.
  • [62]Hicks DL, Sage AB, Shelton E, Schumacher BL, Sah RL, Watson D: Effect of bone morphogenetic proteins 2 and 7 on septal chondrocytes in alginate. Otolaryngol Head Neck Surg 2007, 136:373-379.
  • [63]Abukawa H, Oriel BS, Leaf J, Vacanti JP, Kaban LB, Troulis MJ, Hartnick CJ: Growth factor directed chondrogenic differentiation of porcine bone marrow-derived progenitor cells. J Craniofac Surg 2013, 24:1026-1030.
  • [64]Itoh S, Hattori T, Tomita N, Aoyama E, Yutani Y, Yamashiro T, Takigawa M: CCN family member 2/connective tissue growth factor (CCN2/CTGF) Has anti-aging effects that protect articular cartilage from Age-related degenerative changes. PLoS One 2013, 8:e71156.
  • [65]Furumatsu T, Matsumoto E, Kanazawa T, Fujii M, Lu Z, Kajiki R, Ozaki T: Tensile strain increases expression of CCN2 and COL2A1 by activating TGF-beta-Smad2/3 pathway in chondrocytic cells. J Biomech 2013, 46:1508-1515.
  • [66]Tomita N, Hattori T, Itoh S, Aoyama E, Yao M, Yamashiro T, Takigawa M: Cartilage-specific over-expression of CCN family member 2/connective tissue growth factor (CCN2/CTGF) stimulates insulin-like growth factor expression and bone growth. PLoS One 2013, 8:e59226.
  • [67]Kubota S, Takigawa M: The role of CCN2 in cartilage and bone development. J Cell Commun Signal 2011, 5:209-217.
  • [68]Wang J, Elewaut D, Hoffman I, Veys EM, Verbruggen G: Physiological levels of hydrocortisone maintain an optimal chondrocyte extracellular matrix metabolism. Ann Rheum Dis 2004, 63:61-66.
  • [69]Zhang L, Zhang X, Li KF, Li DX, Xiao YM, Fan YJ, Zhang XD: Icariin promotes extracellular matrix synthesis and gene expression of chondrocytes in vitro. Phytother Res 2012, 26:1385-1392.
  • [70]Li D, Yuan T, Zhang X, Xiao Y, Wang R, Fan Y: Icariin: a potential promoting compound for cartilage tissue engineering. Osteoarthritis Cartilage 2012, 20:1647-1656.
  • [71]Lee HS, Park SY, Park Y, Bae SH, Suh HJ: Yeast hydrolysate protects cartilage via stimulation of type II collagen synthesis and suppression of MMP-13 production. Phytother Res 2013, 27:1414-1418.
  • [72]Tong J, Yao S: Novel scaffold containing transforming growth factor-beta 1 DNA for cartilage tissue engineering. J Bioact Compat Polym 2007, 22:232-244.
  • [73]Song J, Lee M, Kim D, Han J, Chun CH, Jin EJ: MicroRNA-181b regulates articular chondrocytes differentiation and cartilage integrity. Biochem Biophys Res Commun 2013, 431:210-214.
  • [74]Yang B, Guo H, Zhang Y, Chen L, Ying D, Dong S: MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS One 2011, 6:e21679.
  • [75]Legendre F, Dudhia J, Pujol JP, Bogdanowicz P: JAK/STAT but not ERK1/ERK2 pathway mediates interleukin (IL)-6/soluble IL-6R down-regulation of Type II collagen, aggrecan core, and link protein transcription in articular chondrocytes. Association with a down-regulation of SOX9 expression. J Biol Chem 2003, 278:2903-2912.
  • [76]Ryu B, Himaya SW, Napitupulu RJ, Eom TK, Kim SK: Sulfated chitooligosaccharide II (SCOS II) suppress collagen degradation in TNF-induced chondrosarcoma cells via NF-kappaB pathway. Carbohydr Res 2012, 350:55-61.
  • [77]Zhang F, Yao Y, Su K, Fang Y, Citra F, Wang DA: Co-transduction of lentiviral and adenoviral vectors for co-delivery of growth factor and shRNA genes in mesenchymal stem cells-based chondrogenic system. J Tissue Eng Regen Med 2012. doi:10.1002/term.1656
  • [78]Hansen U, Schunke M, Domm C, Ioannidis N, Hassenpflug J, Gehrke T, Kurz B: Combination of reduced oxygen tension and intermittent hydrostatic pressure: a useful tool in articular cartilage tissue engineering. J Biomech 2001, 34:941-949.
  • [79]Scherer K, Schunke M, Sellckau R, Hassenpflug J, Kurz B: The influence of oxygen and hydrostatic pressure on articular chondrocytes and adherent bone marrow cells in vitro. Biorheology 2004, 41:323-333.
  • [80]Waldman SD, Couto DC, Grynpas MD, Pilliar RM, Kandel RA: A single application of cyclic loading can accelerate matrix deposition and enhance the properties of tissue-engineered cartilage. Osteoarthritis Cartilage 2006, 14:323-330.
  • [81]Hu JC, Athanasiou KA: The effects of intermittent hydrostatic pressure on self-assembled articular cartilage constructs. Tissue Eng 2006, 12:1337-1344.
  • [82]Kanazawa T, Furumatsu T, Hachioji M, Oohashi T, Ninomiya Y, Ozaki T: Mechanical stretch enhances COL2A1 expression on chromatin by inducing SOX9 nuclear translocalization in inner meniscus cells. J Orthop Res 2012, 30:468-474.
  • [83]Freed LE, Marquis JC, Langer R, Vunjak-Novakovic G, Emmanual J: Composition of cell-polymer cartilage implants. Biotechnol Bioeng 1994, 43:605-614.
  • [84]Bueno EM, Bilgen B, Barabino GA: Wavy-walled bioreactor supports increased cell proliferation and matrix deposition in engineered cartilage constructs. Tissue Eng 2005, 11:1699-1709.
  • [85]Lee CR, Grodzinsky AJ, Spector M: Biosynthetic response of passaged chondrocytes in a type II collagen scaffold to mechanical compression. J Biomed Mater Res A 2003, 64:560-569.
  • [86]Albrecht C, Tichy B, Nurnberger S, Zak L, Handl MJ, Marlovits S, Aldrian S: Influence of cryopreservation, cultivation time and patient’s age on gene expression in Hyalograft(R) C cartilage transplants. Int Orthop 2013, 37:2297-2303.
  • [87]Abazari A, Jomha NM, Elliott JA, McGann LE: Cryopreservation of articular cartilage. Cryobiology 2013, 66:201-209.
  • [88]Lyu SR, Kuo YC, Ku HF, Hsieh WH: Cryopreserved chondrocytes in porous biomaterials with surface elastin and poly-L-lysine for cartilage regeneration. Colloids Surf B Biointerfaces 2013, 103:304-309.
  • [89]Xia Z, Duan X, Murray D, Triffitt JT, Price AJ: A method of isolating viable chondrocytes with proliferative capacity from cryopreserved human articular cartilage. Cell Tissue Bank 2013, 14:267-276.
  文献评价指标  
  下载次数:21次 浏览次数:20次