期刊论文详细信息
Journal of Biological Engineering
Parameter-less approaches for interpreting dynamic cellular response
Kumar Selvarajoo1 
[1] Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
关键词: Gene expression;    Immune response;    Cell signaling;    Non-parametric;    Biological networks;   
Others  :  1133636
DOI  :  10.1186/1754-1611-8-23
 received in 2014-05-02, accepted in 2014-08-11,  发布年份 2014
【 摘 要 】

Cellular response such as cell signaling is an integral part of information processing in biology. Upon receptor stimulation, numerous intracellular molecules are invoked to trigger the transcription of genes for specific biological purposes, such as growth, differentiation, apoptosis or immune response. How complex are such specialized and sophisticated machinery? Computational modeling is an important tool for investigating dynamic cellular behaviors. Here, I focus on certain types of key signaling pathways that can be interpreted well using simple physical rules based on Boolean logic and linear superposition of response terms. From the examples shown, it is conceivable that for small-scale network modeling, reaction topology, rather than parameter values, is crucial for understanding population-wide cellular behaviors. For large-scale response, non-parametric statistical approaches have proven valuable for revealing emergent properties.

【 授权许可】

   
2014 Selvarajoo; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 1. 84KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Leskovac V: Comprehensive enzyme kinetics. New York: Kluwer Academic/Plenum Pub; 2003.
  • [2]Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP: Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol 2007, 3:1871-1878.
  • [3]Bakker BM, Michels PA, Opperdoes FR, Westerhoff HV: Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. J Biol Chem 1997, 272:3207-3215.
  • [4]Edwards JS, Palsson BO: How will bioinformatics influence metabolic engineering? Biotechnol Bioeng 1998, 58:162-169.
  • [5]Edwards JS, Ibarra RU, Palsson BO: In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 2001, 19:125-130.
  • [6]Barkai N, Leibler S: Robustness in simple biochemical networks. Nature 1997, 387:913-917.
  • [7]Alon U, Surette MG, Barkai N, Leibler S: Robustness in bacterial chemotaxis. Nature 1999, 397:168-171.
  • [8]Selvarajoo K: Discovering differential activation machinery of the Toll-like receptor 4 signaling pathways in MyD88 knockouts. FEBS Lett 2006, 580:1457-1464.
  • [9]Selvarajoo K, Takada Y, Gohda J, Helmy M, Akira S, Tomita M, Tsuchiya M, Inoue J, Matsuo K: Signaling flux redistribution at toll-like receptor pathway junctions. PLoS One 2008, 3:e3430.
  • [10]Helmy M, Gohda J, Inoue J, Tomita M, Tsuchiya M, Selvarajoo K: Predicting novel features of toll-like receptor 3 signaling in macrophages. PLoS One 2009, 4:e4661.
  • [11]Hayashi K, Piras V, Tabata S, Tomita M, Selvarajoo K: A Systems Biology Approach to Suppress TNF-induced Proinflammatory Gene Expressions. Cell Commun Signal 2013, 11:84.
  • [12]Piras V, Hayashi K, Tomita M, Selvarajoo K: Enhancing apoptosis in TRAIL-resistant cancer cells using fundamental response rules. Sci Rep 2011, 1:144.
  • [13]Selvarajoo K: Immuno Systems Biology: A macroscopic approach for immune cell signaling. New York: Springer; 2013.
  • [14]Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R: TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 2008, 9:361-368.
  • [15]Zanoni I, Ostuni R, Marek LR, Barresi S, Barbalat R, Barton GM, Granucci F, Kagan JC: CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 2011, 147:868-880.
  • [16]Krüger M, Kratchmarova I, Blagoev B, Tseng YH, Kahn CR, Mann M: Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc Natl Acad Sci U S A 2008, 105:2451-2456.
  • [17]Selvarajoo K, Tomita M, Tsuchiya M: Can complex cellular processes be governed by simple linear rules? J Bioinfor and Comp Biol 2009, 7:243-268.
  • [18]Selvarajoo K: Macroscopic law of conservation revealed in the population dynamics of Toll-like receptor signaling. Cell Commun Signal 2011, 9:9.
  • [19]Giorgetti L, Siggers T, Tiana G, Caprara G, Notarbartolo S, Corona T, Pasparakis M, Milani P, Bulyk ML, Natoli G: Noncooperative interactions between transcription factors and clustered DNA binding sites enable graded transcriptional responses to environmental inputs. Mol Cell 2010, 37:418-428.
  • [20]Stewart-Ornstein J, Nelson C, DeRisi J, Weissman JS, El-Samad H: Msn2 coordinates a stoichiometric gene expression program. Curr Biol 2013, 23:2336-2345.
  • [21]Zhang R, Shah MV, Yang J, Nyland SB, Liu X, Yun JK, Albert R, Loughran TP Jr: Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci U S A 2008, 105:16308-16313.
  • [22]Selvarajoo K: Understanding multimodal biological decisions from single cell and population dynamics. Wiley Interdiscip Rev Syst Biol Med 2012, 4:385-399.
  • [23]Furusawa C, Kaneko K: A dynamical-systems view of stem cell biology. Science 2012, 338:215-217.
  • [24]Woller A, Gonze D, Erneux T: The Goodwin model revisited: Hopf bifurcation, limit-cycle, and periodic entrainment. Phys Biol 2014, 11:045002.
  • [25]Prigogine I, Lefever R: Symmetry breaking instabilities in dissipative systems. II. J Chem Phys 1968, 48:1695.
  • [26]Barrio RA, Romero-Arias JR, Noguez MA, Azpeitia E, Ortiz-Gutiérrez E, Hernández-Hernández V, Cortes-Poza Y, Álvarez-Buylla ER: Cell patterns emerge from coupled chemical and physical fields with cell proliferation dynamics: the Arabidopsis thaliana root as a study system. PLoS Comput Biol 2013, 9:e1003026.
  • [27]Gitter A, Lu Y, Bar-Joseph Z: Computational methods for analyzing dynamic regulatory networks. Methods Mol Biol 2010, 674:419-441.
  • [28]Chandrasekaran S, Price ND: Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2010, 107:17845-17850.
  • [29]Tu BP, Kudlicki A, Rowicka M, McKnight SL: Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 2005, 310:1152-1158.
  • [30]Tu BP, McKnight SL: Metabolic cycles as an underlying basis of biological oscillations. Nat Rev Mol Cell Biol 2006, 7:696-701.
  • [31]Tsuchiya M, Piras V, Choi S, Akira S, Tomita M, et al.: Emergent genome-wide control in wildtype and genetically mutated lipopolysaccarides-stimulated macrophages. PLoS One 2009, 4:e4905.
  • [32]Selvarajoo K, Giuliani A: Finding self-organization from the dynamic gene expressions of innate immune responses. Front Physiol 2012, 3:192.
  • [33]Huang S, Eichler G, Bar-Yam Y, Ingber DE: Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett 2005, 94:128701.
  • [34]Tsuchiya M, Piras V, Giuliani A, Tomita M, Selvarajoo K: Collective dynamics of specific gene ensembles crucial for neutrophil differentiation: the existence of genome vehicles revealed. PLoS One 2010, 5:e12116.
  • [35]Guo Y, Eichler GS, Feng Y, Ingber DE, Huang S: Towards a holistic, yet gene-centered analysis of gene expression profiles: a case study of human lung cancers. J Biomed Biotechnol 2006, 2006:69141.
  • [36]Zhang R, Cavalcante HL DS, Gao Z, Gauthier DJ, Socolar JE, Adams MM, Lathrop DP: Boolean chaos. Phys Rev E Stat Nonlin Soft Matter Phys 2009, 80:045202.
  • [37]Cavalcante HL, Gauthier DJ, Socolar JE, Zhang R: On the origin of chaos in autonomous Boolean networks. Philos Trans A Math Phys Eng Sci 2010, 368:495-513.
  文献评价指标  
  下载次数:53次 浏览次数:55次