期刊论文详细信息
Genome Biology
5-Hydroxymethylcytosine is an essential intermediate of active DNA demethylation processes in primary human monocytes
Michael Rehli1  Reinhard Andreesen2  Claudia Gebhard1  Sandra Schmidhofer1  Maja Klug3 
[1] Department of Internal Medicine III, University Hospital Regensburg, D-93042 Regensburg, Germany;Regensburg Centre for Interventional Immunology (RCI), D-93042 Regensburg, Germany;German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
关键词: differentiation;    active DNA demethylation;    Epigenetics;   
Others  :  866677
DOI  :  10.1186/gb-2013-14-5-r46
 received in 2012-10-10, accepted in 2013-05-26,  发布年份 2013
PDF
【 摘 要 】

Background

Cytosine methylation is a frequent epigenetic modification restricting the activity of gene regulatory elements. Whereas DNA methylation patterns are generally inherited during replication, both embryonic and somatic differentiation processes require the removal of cytosine methylation at specific gene loci to activate lineage-restricted elements. However, the exact mechanisms facilitating the erasure of DNA methylation remain unclear in many cases.

Results

We previously established human post-proliferative monocytes as a model to study active DNA demethylation. We now show, for several previously identified genomic sites, that the loss of DNA methylation during the differentiation of primary, post-proliferative human monocytes into dendritic cells is preceded by the local appearance of 5-hydroxymethylcytosine. Monocytes were found to express the methylcytosine dioxygenase Ten-Eleven Translocation (TET) 2, which is frequently mutated in myeloid malignancies. The siRNA-mediated knockdown of this enzyme in primary monocytes prevented active DNA demethylation, suggesting that TET2 is essential for the proper execution of this process in human monocytes.

Conclusions

The work described here provides definite evidence that TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine initiates targeted, active DNA demethylation in a mature postmitotic myeloid cell type.

【 授权许可】

   
2013 Klug et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727082716836.pdf 708KB PDF download
91KB Image download
63KB Image download
94KB Image download
51KB Image download
【 图 表 】

【 参考文献 】
  • [1]Bird A: DNA methylation patterns and epigenetic memory. Genes Dev 2002, 16:6-21.
  • [2]Jaenisch R, Bird A: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003, Suppl:245-254.
  • [3]Ooi SK, Bestor TH: The colorful history of active DNA demethylation. Cell 2008, 133:1145-1148.
  • [4]Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324:930-935.
  • [5]Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y: Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010, 466:1129-1133.
  • [6]Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer CA, Mostoslavsky G, Lahesmaa R, Orkin SH, Rodig SJ, Daley GQ, Rao A: Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 2011, 8:200-213.
  • [7]Zhu JK: Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 2009, 43:143-166.
  • [8]Iqbal K, Jin SG, Pfeifer GP, Szabo PE: Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA 2011, 108:3642-3647.
  • [9]Yamaguchi S, Hong K, Liu R, Inoue A, Shen L, Zhang K, Zhang Y: Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming. Cell Res 2013, 23:329-339.
  • [10]Kagiwada S, Kurimoto K, Hirota T, Yamaji M, Saitou M: Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J 2013, 32:340-353.
  • [11]Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG, Iqbal K, Shi YG, Deng Z, Szabo PE, Pfeifer GP, Li J, Xu GL: The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 2011, 477:606-610.
  • [12]Inoue A, Zhang Y: Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 2011, 334:194.
  • [13]Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, Arand J, Nakano T, Reik W, Walter J: 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2011, 2:241.
  • [14]Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, Kosmider O, Le Couedic JP, Robert F, Alberdi A, Lecluse Y, Plo I, Dreyfus FJ, Marzac C, Casadevall N, Lacombe C, Romana SP, Dessen P, Soulier J, Viguie F, Fontenay M, Vainchenker W, Bernard OA: Mutation in TET2 in myeloid cancers. N Engl J Med 2009, 360:2289-2301.
  • [15]Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M, Stevens-Linders E, van Hoogen P, van Kessel AG, Raymakers RA, Kamping EJ, Verhoef GE, Verburgh E, Hagemeijer A, Vandenberghe P, de Witte T, van der Reijden BA, Jansen JH: Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 2009, 41:838-842.
  • [16]Mullighan CG: TET2 mutations in myelodysplasia and myeloid malignancies. Nat Genet 2009, 41:766-767.
  • [17]Ko M, Bandukwala HS, An J, Lamperti ED, Thompson EC, Hastie R, Tsangaratou A, Rajewsky K, Koralov SB, Rao A: Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci USA 2011, 108:14566-14571.
  • [18]Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, Liu XS, Aravind L, Agarwal S, Maciejewski JP, Rao A: Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 2010, 468:839-843.
  • [19]Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, Figueroa ME, Vasanthakumar A, Patel J, Zhao X, Perna F, Pandey S, Madzo J, Song C, Dai Q, He C, Ibrahim S, Beran M, Zavadil J, Nimer SD, Melnick A, Godley LA, Aifantis I, Levine RL: Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 2011, 20:11-24.
  • [20]Pronier E, Almire C, Mokrani H, Vasanthakumar A, Simon A, da Costa Reis Monte Mor B, Masse A, Le Couedic JP, Pendino F, Carbonne B, Larghero J, Ravanat JL, Casadevall N, Bernard OA, Droin N, Solary E, Godley LA, Vainchenker W, Plo I, Delhommeau F: Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors. Blood 2011, 118:2551-2555.
  • [21]Gebhard C, Schwarzfischer L, Pham TH, Schilling E, Klug M, Andreesen R, Rehli M: Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res 2006, 66:6118-6128.
  • [22]Schmidl C, Klug M, Boeld TJ, Andreesen R, Hoffmann P, Edinger M, Rehli M: Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity. Genome Res 2009, 19:1165-1174.
  • [23]Klug M, Heinz S, Gebhard C, Schwarzfischer L, Krause SW, Andreesen R, Rehli M: Active DNA demethylation in human postmitotic cells correlates with activating histone modifications, but not transcription levels. Genome Biol 2010, 11:R63. BioMed Central Full Text
  • [24]Kim MS, Kondo T, Takada I, Youn MY, Yamamoto Y, Takahashi S, Matsumoto T, Fujiyama S, Shirode Y, Yamaoka I, Kitagawa H, Takeyama K, Shibuya H, Ohtake F, Kato S: DNA demethylation in hormone-induced transcriptional derepression. Nature 2009, 461:1007-1012.
  • [25]Zhu B, Zheng Y, Angliker H, Schwarz S, Thiry S, Siegmann M, Jost JP: 5-Methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence. Nucleic Acids Res 2000, 28:4157-4165.
  • [26]He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL: Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333:1303-1307.
  • [27]Zhang L, Lu X, Lu J, Liang H, Dai Q, Xu GL, Luo C, Jiang H, He C: Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat Chem Biol 2012, 8:328-330.
  • [28]Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333:1300-1303.
  • [29]Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, Balasubramanian S: Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 2012, 336:934-937.
  • [30]Bauer M, Goldstein M, Christmann M, Becker H, Heylmann D, Kaina B: Human monocytes are severely impaired in base and DNA double-strand break repair that renders them vulnerable to oxidative stress. Proc Natl Acad Sci USA 2011, 108:21105-21110.
  • [31]Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C, Munzel M, Wagner M, Muller M, Khan F, Eberl HC, Mensinga A, Brinkman AB, Lephikov K, Muller U, Walter J, Boelens R, van Ingen H, Leonhardt H, Carell T, Vermeulen M: Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 2013, 152:1146-1159.
  • [32]Serandour AA, Avner S, Oger F, Bizot M, Percevault F, Lucchetti-Miganeh C, Palierne G, Gheeraert C, Barloy-Hubler F, Peron CL, Madigou T, Durand E, Froguel P, Staels B, Lefebvre P, Metivier R, Eeckhoute J, Salbert G: Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation-associated enhancers. Nucleic Acids Res 2012, 40:8255-8265.
  • [33]Gebhard C, Benner C, Ehrich M, Schwarzfischer L, Schilling E, Klug M, Dietmaier W, Thiede C, Holler E, Andreesen R, Rehli M: General transcription factor binding at CpG islands in normal cells correlates with resistance to de novo DNA methylation in cancer cells. Cancer Res 2010, 70:1398-1407.
  • [34]Mohn F, Weber M, Schubeler D, Roloff TC: Methylated DNA immunoprecipitation (MeDIP). Methods Mol Biol 2009, 507:55-64.
  文献评价指标  
  下载次数:29次 浏览次数:10次