期刊论文详细信息
Journal of Neuroinflammation
NFκB signaling drives pro-granulocytic astroglial responses to neuromyelitis optica patient IgG
Charles L. Howe3  Claudia F. Lucchinetti1  Patrick D. Fitz-Gibbon2  Christina B. McCarthy1  Renee K. Johnson1  Yong Guo1  Margaret E. Walker-Caulfield1 
[1] Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester 55905, MN, USA;Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA;Department of Immunology, Mayo Clinic, Rochester, MN, USA
关键词: NFκB;    Reactive astrocyte;    NMO;    Bortezomib;    PR-957;   
Others  :  1228650
DOI  :  10.1186/s12974-015-0403-8
 received in 2015-08-13, accepted in 2015-09-22,  发布年份 2015
【 摘 要 】

Background

Astrocytes expressing the aquaporin-4 water channel are a primary target of pathogenic, disease-specific immunoglobulins (IgG) found in patients with neuromyelitis optica (NMO). Immunopathological analyses of active NMO lesions highlight a unique inflammatory phenotype marked by infiltration of granulocytes. Previous studies characterized this granulocytic infiltrate as a response to vasculocentric complement activation and localized tissue destruction. In contrast, we observe that granulocytic infiltration in NMO lesions occurs independently of complement-mediated tissue destruction or active demyelination. These immunopathological findings led to the hypothesis that NMO IgG stimulates astrocyte signaling that is responsible for granulocytic recruitment in NMO.

Methods

Histopathology was performed on archival formalin-fixed paraffin-embedded autopsy-derived CNS tissue from 23 patients clinically and pathologically diagnosed with NMO or NMO spectrum disorder. Primary murine astroglial cultures were stimulated with IgG isolated from NMO patients or control IgG from healthy donors. Transcriptional responses were assessed by microarray, and translational responses were measured by ELISA. Signaling through the NFκB pathway was measured by western blotting and immunostaining.

Results

Stimulation of primary murine astroglial cultures with NMO IgG elicited a reactive and inflammatory transcriptional response that involved signaling through the canonical NFκB pathway. This signaling resulted in the release of pro-granulocytic chemokines and was inhibited by the clinically relevant proteasome inhibitors bortezomib and PR-957.

Conclusions

We propose that the astrocytic NFκB-dependent inflammatory response to stimulation by NMO IgG represents one of the earliest events in NMO pathogenesis, providing a target for therapeutic intervention upstream of irreversible cell death and tissue damage.

【 授权许可】

   
2015 Walker-Caulfield et al.

附件列表
Files Size Format View
Fig. 5. 55KB Image download
Fig. 4. 75KB Image download
Fig. 3. 68KB Image download
Fig. 2. 147KB Image download
Fig. 1. 298KB Image download
Fig. 5. 55KB Image download
Fig. 4. 75KB Image download
Fig. 3. 68KB Image download
Fig. 2. 147KB Image download
Fig. 1. 298KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Pereira WL, Reiche EM, Kallaur AP, Kaimen-Maciel DR: Epidemiological, clinical, and immunological characteristics of neuromyelitis optica: A review. J Neurol Sci 2015, 355(1–2):7-17.
  • [2]Jarius S, Wildemann B, Paul F: Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin Exp Immunol 2014, 176(2):149-64.
  • [3]Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR: IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005, 202(4):473-7.
  • [4]Verkman AS, Phuan PW, Asavapanumas N, Tradtrantip L: Biology of AQP4 and anti-AQP4 antibody: therapeutic implications for NMO. Brain Pathol 2013, 23(6):684-95.
  • [5]Papadopoulos MC, Verkman AS: Aquaporin water channels in the nervous system. Nat Rev Neurosci 2013, 14(4):265-77.
  • [6]Pittock SJ, Weinshenker BG, Lucchinetti CF, Wingerchuk DM, Corboy JR, Lennon VA: Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Arch Neurol 2006, 63(7):964-8.
  • [7]Howe CL, Kaptzan T, Magana SM, Ayers-Ringler JR, LaFrance-Corey RG, Lucchinetti CF: Neuromyelitis optica IgG stimulates an immunological response in rat astrocyte cultures. Glia 2014, 62(5):692-708.
  • [8]Lucchinetti CF, Guo Y, Popescu BF, Fujihara K, Itoyama Y, Misu T: The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathol 2014, 24(1):83-97.
  • [9]Popescu BF, Lennon VA, Parisi JE, Howe CL, Weigand SD, Cabrera-Gomez JA, et al.: Neuromyelitis optica unique area postrema lesions: nausea, vomiting, and pathogenic implications. Neurology 2011, 76(14):1229-37.
  • [10]Nytrova P, Potlukova E, Kemlink D, Woodhall M, Horakova D, Waters P, et al.: Complement activation in patients with neuromyelitis optica. J Neuroimmunol 2014, 274(1–2):185-91.
  • [11]Papadopoulos MC, Bennett JL, Verkman AS: Treatment of neuromyelitis optica: state-of-the-art and emerging therapies. Nat Rev Neurol 2014, 10(9):493-506.
  • [12]Popescu BF, Lucchinetti CF: Pathology of demyelinating diseases. Annu Rev Pathol 2012, 7:185-217.
  • [13]Burda JE, Sofroniew MV: Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 2014, 81(2):229-48.
  • [14]Sofroniew MV: Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 2015, 16(5):249-63.
  • [15]Pekny M, Wilhelmsson U, Pekna M: The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 2014, 565:30-8.
  • [16]Zeger SL, Liang KY: Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986, 42(1):121-30.
  • [17]Wang F, Smith NA, Xu Q, Fujita T, Baba A, Matsuda T, et al.: Astrocytes modulate neural network activity by Ca(2)+−dependent uptake of extracellular K+. Sci Signal 2012, 5(218):ra26.
  • [18]Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, et al.: Genomic analysis of reactive astrogliosis. J Neurosci 2012, 32(18):6391-410.
  • [19]Kramer A, Green J, Pollard J Jr, Tugendreich S: Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014, 30(4):523-30.
  • [20]Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, et al.: A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003, 348(26):2609-17.
  • [21]Muchamuel T, Basler M, Aujay MA, Suzuki E, Kalim KW, Lauer C, et al.: A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat Med 2009, 15(7):781-7.
  • [22]Ichikawa HT, Conley T, Muchamuel T, Jiang J, Lee S, Owen T, et al.: Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis Rheum 2012, 64(2):493-503.
  • [23]Jarius S, Paul F, Franciotta D, Ruprecht K, Ringelstein M, Bergamaschi R, et al.: Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J Neurol Sci 2011, 306(1–2):82-90.
  • [24]Milano E, Di Sapio A, Malucchi S, Capobianco M, Bottero R, Sala A, et al.: Neuromyelitis optica: importance of cerebrospinal fluid examination during relapse. Neurol Sci 2003, 24(3):130-3.
  • [25]Matsushita T, Tateishi T, Isobe N, Yonekawa T, Yamasaki R, Matsuse D, et al.: Characteristic cerebrospinal fluid cytokine/chemokine profiles in neuromyelitis optica, relapsing remitting or primary progressive multiple sclerosis. PLoS ONE 2013., 8(4) Article ID e61835
  • [26]Michael BD, Elsone L, Griffiths MJ, Faragher B, Borrow R, Solomon T, et al.: Post-acute serum eosinophil and neutrophil-associated cytokine/chemokine profile can distinguish between patients with neuromyelitis optica and multiple sclerosis; and identifies potential pathophysiological mechanisms - a pilot study. Cytokine 2013, 64(1):90-6.
  • [27]Uzawa A, Mori M, Arai K, Sato Y, Hayakawa S, Masuda S, et al.: Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6. Mult Scler 2010, 16(12):1443-52.
  • [28]Uzawa A, Mori M, Kuwabara S: Cytokines and chemokines in neuromyelitis optica: pathogenetic and therapeutic implications. Brain Pathol 2014, 24(1):67-73.
  • [29]Correale J, Fiol M: Activation of humoral immunity and eosinophils in neuromyelitis optica. Neurology 2004, 63(12):2363-70.
  • [30]Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM, et al.: A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 2002, 125(Pt 7):1450-61.
  • [31]Pittock SJ, Lennon VA, McKeon A, Mandrekar J, Weinshenker BG, Lucchinetti CF, et al.: Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol 2013, 12(6):554-62.
  • [32]Sun SC, Chang JH, Jin J: Regulation of nuclear factor-kappaB in autoimmunity. Trends Immunol 2013, 34(6):282-9.
  • [33]Yanaba K, Yoshizaki A, Muroi E, Hara T, Ogawa F, Shimizu K, et al.: The proteasome inhibitor bortezomib inhibits T cell-dependent inflammatory responses. J Leukoc Biol 2010, 88(1):117-22.
  • [34]Sun K, Welniak LA, Panoskaltsis-Mortari A, O'Shaughnessy MJ, Liu H, Barao I, et al.: Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the proteasome inhibitor bortezomib. Proc Natl Acad Sci U S A 2004, 101(21):8120-5.
  • [35]Neubert K, Meister S, Moser K, Weisel F, Maseda D, Amann K, et al.: The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 2008, 14(7):748-55.
  • [36]Merin NM, Kelly KR: Clinical use of proteasome inhibitors in the treatment of multiple myeloma. Pharm 2014, 8(1):1-20.
  • [37]Gomez AM, Willcox N, Vrolix K, Hummel J, Nogales-Gadea G, Saxena A, et al.: Proteasome inhibition with bortezomib depletes plasma cells and specific autoantibody production in primary thymic cell cultures from early-onset myasthenia gravis patients. J Immunol 2014, 193(3):1055-63.
  • [38]DiLillo DJ, Hamaguchi Y, Ueda Y, Yang K, Uchida J, Haas KM, et al.: Maintenance of long-lived plasma cells and serological memory despite mature and memory B cell depletion during CD20 immunotherapy in mice. J Immunol 2008, 180(1):361-71.
  • [39]Bennett JL, Lam C, Kalluri SR, Saikali P, Bautista K, Dupree C, et al.: Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol 2009, 66(5):617-29.
  • [40]Kowarik MC, Dzieciatkowska M, Wemlinger S, Ritchie AM, Hemmer B, Owens GP, et al.: The cerebrospinal fluid immunoglobulin transcriptome and proteome in neuromyelitis optica reveals central nervous system-specific B cell populations. J Neuroinflammation 2015, 12:19. BioMed Central Full Text
  • [41]Basler M, Mundt S, Muchamuel T, Moll C, Jiang J, Groettrup M, et al.: Inhibition of the immunoproteasome ameliorates experimental autoimmune encephalomyelitis. EMBO Mol Med 2014, 6(2):226-38.
  • [42]Jansen AH, Reits EA, Hol EM: The ubiquitin proteasome system in glia and its role in neurodegenerative diseases. Front Mol Neurosci 2014, 7:73.
  • [43]Kisselev AF, Groettrup M: Subunit specific inhibitors of proteasomes and their potential for immunomodulation. Curr Opin Chem Biol 2014, 23:16-22.
  • [44]Bradl M, Misu T, Takahashi T, Watanabe M, Mader S, Reindl M, et al.: Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol 2009, 66(5):630-43.
  • [45]Herges K, de Jong BA, Kolkowitz I, Dunn C, Mandelbaum G, Ko RM, et al.: Protective effect of an elastase inhibitor in a neuromyelitis optica-like disease driven by a peptide of myelin oligodendroglial glycoprotein. Mult Scler 2012, 18(4):398-408.
  • [46]Jones MV, Huang H, Calabresi PA, Levy M: Pathogenic aquaporin-4 reactive T cells are sufficient to induce mouse model of neuromyelitis optica. Acta Neuropathol Commun 2015, 3:28. BioMed Central Full Text
  • [47]Saadoun S, Waters P, MacDonald C, Bell BA, Vincent A, Verkman AS, et al.: Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain. Ann Neurol 2012, 71(3):323-33.
  • [48]Asavapanumas N, Ratelade J, Papadopoulos MC, Bennett JL, Levin MH, Verkman AS: Experimental mouse model of optic neuritis with inflammatory demyelination produced by passive transfer of neuromyelitis optica-immunoglobulin G. J Neuroinflammation 2014, 11:16. BioMed Central Full Text
  • [49]Zhang H, Verkman AS: Longitudinally extensive NMO spinal cord pathology produced by passive transfer of NMO-IgG in mice lacking complement inhibitor CD59. J Autoimmun 2014, 53:67-77.
  • [50]Kitic M, Hochmeister S, Wimmer I, Bauer J, Misu T, Mader S, et al.: Intrastriatal injection of interleukin-1 beta triggers the formation of neuromyelitis optica-like lesions in NMO-IgG seropositive rats. Acta Neuropathol Commun 2013, 1(1):5. BioMed Central Full Text
  • [51]Jacob A, Saadoun S, Kitley J, Leite M, Palace J, Schon F, et al.: Detrimental role of granulocyte-colony stimulating factor in neuromyelitis optica: clinical case and histological evidence. Mult Scler 2012, 18(12):1801-3.
  • [52]Walker-Caulfield ME, Hatfield JK, Brown MA: Dynamic changes in meningeal inflammation correspond to clinical exacerbations in a murine model of relapsing-remitting multiple sclerosis. J Neuroimmunol 2015, 278:112-22.
  • [53]Rosenberg HF, Dyer KD, Foster PS: Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 2013, 13(1):9-22.
  • [54]Magana SM, Matiello M, Pittock SJ, McKeon A, Lennon VA, Rabinstein AA, et al.: Posterior reversible encephalopathy syndrome in neuromyelitis optica spectrum disorders. Neurology 2009, 72(8):712-7.
  文献评价指标  
  下载次数:0次 浏览次数:7次