Lipids in Health and Disease | |
Glycol chitosan incorporated retinoic acid chlorochalcone (RACC) nanoparticles in the treatment of Osteosarcoma | |
Zhen Liu2  Rui-Yan Li2  Qing-Yu Wang2  Bo-Yan Zhang3  Chen-Yu Wang3  Lan-Yu Zhu1  Yan-Guo Qin2  | |
[1] Nursing School, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China;Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, Jilin, China;Norman Bethune Medical School, Jilin University, Changchun 130021, Jilin, China | |
关键词: Glycol chitosan; Inhibition; Migration; Membrane potential; Osteosarcoma; | |
Others : 1220957 DOI : 10.1186/s12944-015-0068-4 |
|
received in 2015-02-23, accepted in 2015-06-26, 发布年份 2015 | |
【 摘 要 】
Background
Osteosarcoma is the most common of all the bone malignancies and accounts for 30-80 % of the primary skeletal sarcomas. The overall survival rate of patients with osteosarcoma is < 20 % suggesting poor prognosis.
Methods
The present study demonstrates the effect of retinoic acid chlorochalcone (RACC) incorporated glycol chitosan (GC) nanoparticle transfection in osteosarcoma cells. MG-63 and Saos-2 osteosarcoma cells were transfected with various concentrations of RACC-incorporated GC nanoparticle for 24 h. The effect on cell proliferation, Ezh2 expression, apoptosis, cell cycle arrest, cell migration and invasiveness, Akt phosphorylation and local tumour growth and metastases were studied.
Results
MG-63 and Saos-2 osteosarcoma cells on RACC-incorporated GC nanoparticle transfection for 24 h showed a concentration-dependent inhibition of cell proliferation. Of the various concentrations of RACC tested, the effective concentration started from 5 μM with an IC 50of 20 μM. Wound healing assay also showed that RACC-incorporated GC nanoparticles inhibited migration of tumor cells more effectively compared to the parent RA. RACC transfection resulted in inhibition of cell proliferation, Ezh2 expression inhibition, apoptosis through mitochondrial pathway by decrease in membrane potential and release of cytochrome c and cell cycle arrest in the G0/G1 phase. The invasiveness of cells treated with 5 and 20 μM RACC was decreased by 49 and 76 % respectively, compared to the control. RACC-treated mice showed significantly lower number of metastases compared to that in the control mice.
Conclusions
Thus, RACC-incorporated glycol chitosan nanoparticle strategy can be promising for the treatment of osteosarcoma.
【 授权许可】
2015 Qin et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150725100416353.pdf | 3581KB | download | |
Fig. 8. | 78KB | Image | download |
Fig. 7. | 31KB | Image | download |
Fig. 6. | 54KB | Image | download |
Fig. 5. | 20KB | Image | download |
Fig. 4. | 33KB | Image | download |
Fig. 3. | 30KB | Image | download |
Fig. 2. | 30KB | Image | download |
Fig. 1. | 27KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
【 参考文献 】
- [1]Meyers PA, Gorlick R. Osteosarcoma. Pediatr Clin North Am. 1997; 44:973-89.
- [2]Link MP, Eilber F. Pediatric oncology: Osteosarcoma. Principles and Practice of Pediatric Oncology. Pizzo PA, Poplack DG, editors. Lippincott, Philadelphia, PA; 1989.
- [3]Bielack SS, Bernstein ML. Osteosarcoma. Cancer in Children: Clinical Management. 5 edition. Oxford University Press, New York, NY; 2005.
- [4]Mankin HJ, Mankin CJ, Simon MA. The hazards of the biopsy, revisited. Members of the Musculoskeletal Tumor Society. J Bone Joint Surg Am. 1996; 78:656-63.
- [5]Enneking WF, Spanier SS, Goodman MA. A system for the surgical staging of musculoskeletal sarcoma. Clin Orthop. 1980; 153:106-20.
- [6]Janeway K, Gorlick R, Bernstein M. Osteosarcoma. In: Orkin S, Fisher D, Look A, Lux S, Ginsburg D, Nathan D, eds. Oncology of Infancy and Childhood. Philadelphia: Saunders Elsevier 2009; 871–910
- [7]Marina N, Gebhardt M, Teot L, Gorlick R. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist. 2004; 9:422-441.
- [8]Gorlick R, Toretsky J, Marina N, et al. Bone tumors. In: Kufe D, Pollock R, Weichselbaum R, et al. eds. Cancer Medicine, 6th ed., Vol. 2. Hamilton, Ontario, Canada: BC Decker 2003; 2383–2406.
- [9]Marina N, Gorlick R, Bielack S. Pediatric osteosarcoma. In: Cancer in Children and Adolecents. Carroll W, Finlay J, editors. Jones and Bartlett, Sudbury, MA; 2008: p.383-394.
- [10]Chou AJ, Geller DS, Gorlick R. Therapy for osteosarcoma: where do we go from here? Paediatr Drugs. 2008; 10:315-327.
- [11]O’Day K, Gorlick R. Novel therapeutic agents for osteosarcoma. Expert Rev Anticancer Ther. 2009; 9:511-523.
- [12]Müller S, Hoege C, Pyrowolakis G, Jentsch S. SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol Cell Biol. 2001; 2:202-210.
- [13]Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol. 2007; 8:947-956.
- [14]Yeh ET. SUMOylation and De-SUMOylation: wrestling with life’s processes. J Biol Chem. 2009; 284:8223-8227.
- [15]Kim JH, Baek SH. Emerging roles of desumoylating enzymes. Biochim Biophys Acta. 1792; 2009:155-162.
- [16]Bailey D, O’Hare P. Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1. J. Biol. Chem. 2004; 279:692-703.
- [17]Cheng J, Wang D, Wang Z, Yeh ET. SENP1 enhances androgen receptor-dependent transcription through desumoylation of histone deacetylase 1. Mol. Cell. Biol. 2004; 24:6021-6028.
- [18]Itahana Y, Yeh ET, Zhang Y. Nucleocytoplasmic shuttling modulates activity and ubiquitination-dependent turnover of SUMO-specific protease 2. Mol. Cell. Biol. 2006; 26:4675-4689.
- [19]Zhang H, Saitoh H, Matunis MJ. Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol. Cell. Biol. 2002; 22:6498-6508.
- [20]Orfanos CE, Ehlert R, Gollnick H. The retinoids: A review of their clinical pharmacology and therapeutic use. Drugs. 1987; 34:459-503.
- [21]Kligman AM. The growing importance of topical retinoids in clinical dermatology: A retrospective and prospective analysis. J Am Acad Dermatol. 1998; 39:S2-S7.
- [22]Chandraratna RA. Current research and future developments in retinoids: Oral and topical agents. Cutis. 1998; 61:40-45.
- [23]Zheng Y, Kramer PM, Lubet RA, Steele VE, Kelloff GJ, Pereira MA. Effect of retinoids on AOM-induced colon cancer in rats: Modulation of cell proliferation, apoptosis and aberrant crypt foci. Carcinogenesis. 1999; 20:255-260.
- [24]Liang JY, Fontana JA, Rao JN, Ordonez JV, Dawson MI, Shroot B, Wilber JF, Feng P. Synthetic retinoid CD437 induces S-phase arrest and apoptosis in human prostate cancer cells LNCaP and PC-3. Prostate. 1999; 38:228-236.
- [25]Weber E, Ravi RK, Knudsen ES, Williams JR, Dillehay LE, Nelkin BD, Kalemkerian GB, Feramisco JR, Mabry M. Retinoic acid-mediated growth inhibition of small cell lung cancer cells is associated with reduced myc and increased p27Kip1 expression. Int J Cancer. 1999; 80:935-943.
- [26]Mologni L, Ponzanelli I, Bresciani F, Sardiello G, Bergamaschi D, Gianni M, Reichert U, Rambaldi A, Terao M, Garattini E. The novel synthetic retinoid 6-[3-adamantyl-4-hydroxyphenyl]-2-naphtalene carboxylic acid (CD437) causes apoptosis in acute promyelocytic leukemia cells through rapid activation of caspases. Blood. 1999; 93:1045-1061.
- [27]Irving H, Lovat PE, Hewson QC, Malcolm AJ, Pearson AD, Redfern CP. Retinoid induced differentiation of neuroblastoma: Comparison between LG69, an RXR-selective analogue and 9-cis retinoic acid. Eur J Cancer. 1998; 34:111-117.
- [28]Dirks PB, Patel K, Hubbard SL, Ackerley C, Hamel PA, Rutka JT. Retinoic acid and the cyclin dependent kinase inhibitors synergistically alter proliferation and morphology of U343 astrocytoma cells. Oncogene. 1997; 15:2037-2048.
- [29]Yung WK, Kyritsis AP, Gleason MJ, Levin VA. Treatment of recurrent malignant gliomas with high-dose 13-cis-retinoic acid. Clin Cancer Res. 1996; 2:1931-1935.
- [30]Defer GL, Adle-Biassette H, Ricolfi ML, Authier FJ, Chomienne C, Degos L, Degos JD. All-trans retinoic acid in relapsing malignant gliomas: Clinical and radiological stabilization associated with the appearance of intratumoral calcifications. J Neurooncol. 1997; 34:169-177.
- [31]Kaba SE, Kyritsis AP, Conrad C, Gleason MJ, Newman R, Levin VA, Yung WK. The treatment of recurrent cerebral gliomas with all-trans-retinoic acid (tretinoin). J Neurooncol. 1997; 34:145-151.
- [32]Saraswat B, Visen PK, Agarwal DP. Ursolic acid isolated from Eucalyptus tereticornis protects against ethanol toxicity in isolated rat hepatocytes. Phytother. Res. 2000; 14:163-166.
- [33]Stummer W, Kamp M. The importance of surgical resection in malignant glioma. Curr Opin Neurol. 2009; 22:645-649.
- [34]Holz-Smith SL, Sun IC, Jin L, Matthews TJ, Lee KH, Chen CH. Role of human immunodeficiency virus (HIV) type 1envelope in the anti-HIV activity of the betulinic acid derivative IC9564, Antimicrob. Agents Chemother. 2001; 45:60-66.
- [35]Ma CM, Cai SQ, Cui JR, Wang RQ, Tu PF, Hattori M, Daneshtalab M. The cytotoxic activity of ursolic acid derivatives, Eur. J. Med. Chem. 2005; 40:582-589.
- [36]Li J, Guo WJ, Yang QY. Effects of ursolic acid and oleanolic acid on human colon carcinoma cell line HCT15, World J. Gastroenterol. 2002; 8:493-495.
- [37]Hsu LY, Kuo PO, Lin CC. Proliferative inhibition, cell-cycle dysregulation and induction of apoptosis by ursolic acid in human non-small cell lung cancer A549 cells. Life Sci. 2004; 75:2303-2316.
- [38]Nishida Y, Knudson W, Knudson CB, Ishiguro N. Antisense inhibition of hyaluronan synthase-2 in human osteosarcoma cells inhibits hyaluronan retention and tumorigenicity. Exp Cell Res. 2005; 307:194-203.
- [39]Hosono K, Nishida Y, Knudson W, Knudson CB, Naruse T, Suzuki Y, Ishiguro N. Hyaluronan oligosaccharides inhibit tumorigenicity of osteosarcoma cell lines MG-63 and LM-8 in vitro and in vivo via perturbation of hyaluronan-rich pericellular matrix of the cells. Am J Pathol. 2007; 171:274-286.
- [40]Monz K, Maas Kuck K, Schumacher U, Schulz T, Hallmann R, Schnaker EM, Schneider SW, Prehm P. Inhibition of hyaluronan export attenuates cell migration and metastasis of human melanoma. J Cell Biochem. 2008; 105:1260-1266.
- [41]Ta HT, Dass CR, Choong PF, Dunstan DE. Osteosarcoma treatment: state of the art. Cancer Metastasis Rev. 2009; 28:247-263.