| Clinical Proteomics | |
| A proteomic profile of synoviocyte lesions microdissected from formalin-fixed paraffin-embedded synovial tissues of rheumatoid arthritis | |
| Toshihide Nishimura3  Harubumi Kato3  Makoto Kihara1  Junji Hayashi2  | |
| [1] Medical ProteoScope Co., Ltd., Tokyo, Japan;Niizashiki Central General Hospital, Saitama, Japan;Department of Thoracic and Thyroid Surgery, Tokyo Medical University, Tokyo, Japan | |
| 关键词: Protein–protein interaction network analysis; Spectral counting; HPLC/mass spectrometry; Formalin-fixed paraffin embedded (FFPE); Synovial tissues; Osteoarthritis; Rheumatoid arthritis; | |
| Others : 1222548 DOI : 10.1186/s12014-015-9091-8 |
|
| received in 2015-01-27, accepted in 2015-07-15, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation of the synovial joints. Early intervention followed by early diagnosis can result in disease remission; however, both early stage diagnosis and provision of effective treatment have been impeded by the heterogeneity of RA, which details of pathological mechanism are unclear. Regardless of numerous investigations of RA by means of genomic and proteomic approaches, proteins interplaying in RA synovial tissues that contain various types of synoviocytes, are not yet sufficiently understood. Hence we have conducted an HPLC/mass spectrometry-based exploratory proteomic analysis focusing on synoviocyte lesions laser-microdissected (LMD) from formalin-fixed paraffin-embedded (FFPE) synovial tissues (RA, n = 15; OA, n = 5), where those of Osteoarthritis (OA) were used as the control.
Results
A total of 508 proteins were identified from the RA and OA groups. With the semi-quantitative comparisons, the spectral index (SpI), log2 protein ratio (R SC ) based on spectral counting, and statistical G-test, 98 proteins were found to be significant (pair-wise p < 0.05) to the RA synovial tissues. These include stromelysin-1 (MMP3), proteins S100-A8 and S100-A9, plastin-2, galectin-3, calreticulin, cathepsin Z, HLA-A, HLA-DRB1, ferritin, neutrophil defensin 1, CD14, MMP9 etc.
Conclusions
Our results confirmed the involvement of known RA biomarkers such as stromelysin-1 (MMP3) and proteins S100-A8 and S100-A9, and also that of leukocyte antigens such as HLA-DRB1. Network analyses of protein–protein interaction for those proteins significant to RA revealed a dominant participation of ribosome pathway (p = 5.91 × 10 −45 ), and, interestingly, the associations of the p53 signaling (p = 2.34 × 10 −5 ). An involvement of proteins including CD14, S100-A8/S100-A9 seems to suggest an activation of the NF-kB/MAPK signaling pathway. Our strategy of laser-microdissected FFPE-tissue proteomic analysis in Rheumatoid Arthritis thus demonstrated its technical feasibility in profiling proteins expressed in synovial tissues, which may play important roles in the RA pathogenesis.
【 授权许可】
2015 Hayashi et al.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150823031547588.pdf | 1614KB | ||
| Fig.3. | 99KB | Image | |
| Fig.2. | 121KB | Image | |
| Fig.1. | 29KB | Image |
【 图 表 】
Fig.1.
Fig.2.
Fig.3.
【 参考文献 】
- [1]Giladi H, Sukenik S, Flusser D, Liel-Cohen N, Applebaum A, Sion-Vardy N. A rare case of enterobacter endocarditis superimposed on a mitral valve rheumatoid nodule. J Clin Rheumatol. 2008; 14:97-100.
- [2]Carl HD, Swoboda B. Effectiveness of arthroscopic synovectomy in rheumatoid arthritis. Z Rheumatol. 2008; 67:485-490.
- [3]Meltzer EB, Noble PW (2008) Idiopathic pulmonary fibrosis. Orphanet J Rare Dis 3:8–8
- [4]Levin J, Werth VP. Skin disorders with arthritis. Best Pract Res Clin Rheumatol. 2006; 20:809-826.
- [5]Nippon rheumatoid arthritis foundation. http://www.rheuma-net.or.jp/rheuma/hyobou/rm310-2.html. Accessed 30 Jul 2015.
- [6]Sacks JJ, Luo YH, Helmick CG. Prevalence of specific types of arthritis and other rheumatic conditions in the ambulatory health care system in the United States, 2001–2005. Arthritis Care Res. 2010; 62:460.
- [7]Myasoedova E, Crowson CS, Kremers HM, Therneau TM, Gabriel SE. Is the incidence of rheumatoid arthritis rising? results from Olmsted County, Minnesota, 1955–2007. Arthritis Rheum. 2010; 62:1576-1586.
- [8]Helmick CG, Felson DT, Lawrence RC. National Arthritis Data Workgroup Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: part I. Arthritis Rheum. 2008; 58:15-25.
- [9]Sinz A, Bantscheff M, Mikkat S, Ringel B, Drynda S, Kekow J et al.. Mass spectrometric proteome analyses of synovial fluids and plasmas from patients suffering from rheumatoid arthritis and comparison to reactive arthritis or osteoarthritis. Electrophoresis. 2002; 23:3445-3456.
- [10]Uchida T, Fukawa A, Uchida M, Fujita K, Saito KJ. Application of a novel protein biochip technology for detection and identification of rheumatoid arthritis biomarkers in synovial fluid. Proteome Res. 2002; 1:495-499.
- [11]Bresnihan B. Are synovial biopsies of diagnostic value? Arthritis Res Ther. 2003; 5:271-278. BioMed Central Full Text
- [12]Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003; 423:356-361.
- [13]Drynda S, Ringel B, Kekow M, Kuhne C, Drynda A, Glocker MO et al.. Proteome analysis reveals disease-associated marker proteins to differentiate RA patients from other inflammatory joint diseases with the potential to monitor anti-TNF-alpha therapy. Pathol Res Pract. 2004; 200:165-171.
- [14]Liao H, Wu J, Kuhn E, Chin W, Chang B, Jones MD et al.. Use of mass spectrometry to identify protein biomarkers of disease severity in the synovial fluid and serum of patients with rheumatoid arthritis. Arthritis Rheum. 2004; 50:3792-3803.
- [15]Dasuri K, Antonovici M, Chen K, Wong K, Standing K, Ens W et al.. The synovial proteome: analysis of fibroblast-like synoviocytes. Arthritis Res Ther. 2004; 6:R161-R168. BioMed Central Full Text
- [16]Tampoia M, Brescia V, Fontana A, Maggiolini P, Zucano A, Pansini N. Proteomics: new advances in the diagnosis of rheumatoid arthritis. Clin Chim Acta. 2005; 357:219-225.
- [17]de Seny D, Fillet M, Meuwis MA, Geurts P, Lutteri L, Ribbens C et al.. Discovery of new rheumatoid arthritis biomarkers using the surface-enhanced laser desorption/ionization time-of-flight mass spectrometry ProteinChip approach. Arthritis Rheum. 2005; 52:3801-3812.
- [18]Tilleman K, Van Beneden K, Dhondt A, Hoffman I, De Keyser F, Veys E et al.. Chronically inflamed synovium from spondyloarthropathy and rheumatoid arthritis investigated by protein expression profiling followed by tandem mass spectrometry. Proteomics. 2005; 5:2247-2257.
- [19]Kim CW, Cho EH, Lee TJ, Kim YH, Hah Y-S, Kim DR. Disease-specific proteins from rheumatoid arthritis patients. J Korean Med Sci. 2006;21:478–84.
- [20]Vanarsa K, Mohan C. Proteomics in rheumatology: the dawn of a new era. F1000 Med Rep. 2010;2:87.
- [21]Lindstrom TM, Robinson WH. Biomarkers for rheumatoid arthritis: making it personal. Scand J Clin Lab Invest Suppl. 2010; 242:79-84.
- [22]Chandra PE, Sokolove J, Hipp BG, Lindstrom TM, Elder JT, Reveille JD et al.. Novel multiplex technology for diagnostic characterization of rheumatoid arthritis. Arthritis Res Therapy. 2011; 13:R102. BioMed Central Full Text
- [23]Connor AM, Mahomed N, Gandhi R, Keystone EC, Berger SA. TNFα modulates protein degradation pathways in rheumatoid arthritis synovial fibroblasts. Arthritis Res Therapy. 2012; 14:R62. BioMed Central Full Text
- [24]Raijmakers R, van Beers JJBC, El-Azzouny M, Visser NFC, Božič B, Pruijn GJM et al.. Elevated levels of fibrinogen-derived endogenous citrullinated peptides in synovial fluid of rheumatoid arthritis patients. Arthritis Res Therapy. 2012; 14:R114. BioMed Central Full Text
- [25]Balakrishnan L, Bhattacharjee M, Ahmad S, Nirujogi RS, Renuse S, Subbannayya Y et al.. Differential proteomic analysis of synovial fluid from rheumatoid arthritis and osteoarthritis patients. Clin Proteomics. 2014; 11:1. BioMed Central Full Text
- [26]Burska AN, Roget K, Blits M, Soto Gomez L, van de Loo F, Hazelwood LD et al.. Gene expression analysis in RA: towards personalized medicine. Pharmacogenomics J. 2014; 14:93-106.
- [27]Fehniger TE, Marko-Varga G. Proteomics and disease revisited: the challenge of providing proteomic tools into clinical practice. J Proteome Res. 2010; 9:1191-1192.
- [28]Zhang Yaoyang, Fonslow Bryan R, Shan Bing, Baek Moon-Chang, Yates John R. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013; 113:2343-2394.
- [29]Brown LM. Quantitative shotgun proteomics with data-independent acquisition and traveling wave ion mobility spectrometry: a versatile tool in the life sciences. Adv Exp Med Biol. 2014; 806:79-91.
- [30]Nishimura T, Tojo H Mass spectromery-based protein sequencing platforms, chapter 5 in genomics and proteomics for clinical discovery and development. In: Marko-Varga G (ed) Translational bioinformatics 6, Series Editor Wang X., Springer ISBN 978-94-017-9201-1, 2014
- [31]Hood BL, Darfer MM, Furusato B, Lucas DA, Ringeisen BR, Sesterhenn IA et al.. Proteomic analysis of formalin-fixed prostate cancer tissue. Mol Cell Proteomics. 2005; 4:1741-1753.
- [32]Kawamura T, Nomura M, Tojo H, Fujii K, Hamasaki H, Mikami S et al.. Proteomic analysis of laser-microdissected paraffin-embedded tissues: (1) Stage-related protein candidates upon non-metastatic lung adenocarcinoma. J Proteomics. 2010; 73:1089-1099.
- [33]Nishimura T, Nomura M, Tojo H, Hamasaki H, Fukuda T, Fujii K et al.. Proteomic analysis of laser-microdissected paraffin-embedded tissues: (2) MRM assay for stage-related proteins upon non-metastatic lung adenocarcinoma. J Proteomics. 2010; 73:1100-1110.
- [34]Nomura M, Fukuda T, Fujii K, Kawamura T, Tojo H, Kihara M et al.. Preferential expression of potential markers for cancer stem cells in large cell neuroendocrine carcinoma of the lung. An FFPE proteomic study. J Clin Bioinforma. 2011; 1:23. BioMed Central Full Text
- [35]Protein analysis through evolutionary relationships (PANTHER) classification system. http://www.pantherdb.org/. Accessed 28 Jan 2015.
- [36]Fu X, Gharib SA, Green PS, Aitken ML, Frazer DA, Park DR et al.. Spectral index for assessment of differential protein expression in shotgun proteomics. J Proteome Res. 2008; 7:845-854.
- [37]Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR et al.. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics. 2005; 4:1487-1502.
- [38]Zhang B, VerBerkmoes NC, Langston MA, Uberbacher E, Hettich RL, Samatova NF. Detecting differential and correlated protein expression in label-free shotgun proteomics. J Proteome Res. 2006; 5:2909-2918.
- [39]Embree MC, Kilts TM, Ono M, Inkson CA, Syed-Picard F, Karsdal MA et al.. Biglycan and fibromodulin have essential roles in regulating chondrogenesis and extracellular matrix turnover in temporomandibular joint osteoarthritis. Am J Pathol. 2010; 176:812-826.
- [40]Gruber HE, Ingram JA, Hoelscher GL, Zinchenko N, Hanley EN Jr, Sun Y. Asporin, a susceptibility gene in osteoarthritis, is expressed at higher levels in the more degenerate human intervertebral disc. Arthritis Res Therapy. 2009;11:R47.
- [41]van Lent PL, Grevers L, Blom AB, Sloetjes A, Mort JS, Vogl T, et al. Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis. Ann Rheum Dis. 2008;67:1750–8.
- [42]Chang X, Cui Y, Zong M, Zhao Y, Yan X, Chen Y et al.. Identification of proteins with increased expression in rheumatoid arthritis synovial tissues. J Rheumatol. 2009; 36:872-880.
- [43]Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(Database issue):D808–D815
- [44]Search tool for the retrieval of interacting genes/proteins (STRING) database. http://string-db.org/. Accessed 13 May 2015.
- [45]Ziolkowska M, Kurowska M, Radzikowska A, Luszczykiewicz G, Wiland P, Dziewczopolski W et al.. High levels of osteoprotegerin and soluble receptor activator of nuclear factor kappa B ligand in serum of rheumatoid arthritis patients and their normalization after anti-tumor necrosis factor alpha treatment. Arthritis Rheum. 2002; 46:1744-1753.
- [46]Han Z, Boyle DL, Manning AM, Firestein GS. AP-1 and NF-kB regulation in rheumatoid arthritis and murine collagen-induced arthritis. Autoimmunity. 1998; 28:197-208.
- [47]Thalhamer T, McGrath MA, Harnett MM. MAPKs and their relevance to arthritis and inflammation. Rheumatology. 2008; 47:409-414.
- [48]Guma M, Hammaker D, Topolewski K, Corr M, Boyle DL, Karin M et al.. Pro- and anti-inflammatory functions of the p38 pathway in rheumatoid arthritis: advantages of targeting upstream kinases MKK3 or MKK6. Arthritis Rheum. 2012; 64:2887-2895.
- [49]Li JC, Kaminskas E. Accumulation of DNA strand breaks and methotrexate cytotoxicity. Proc Natl Acad Sci USA. 1984; 81:5694-5698.
- [50]Lorico A, Toffoli G, Boiocchi M, Erba E, Broggini M, Rappa G et al.. Accumulation of DNA strand breaks in cells exposed to methotrexate or N10-propargyl-5,8-dideazafolic acid. Cancer Res. 1988; 48:2036-2041.
- [51]Nelson WG, Kastan MB. DNA strand breaks: the dna template alterations that trigger p53-dependent dna damage response pathways. Mol Cell Biol. 1994; 14:1815-1823.
- [52]Oki K, Tsuji F, Ohashi K, Kageyama M, Aono H, Sasano M. The investigation of synovial genomic targets of bucillamine with microarray technique. Inflamm Res. 2009; 58:571-584.
- [53]Stastny P. Mixed lymphocyte cultures in rheumatoid arthritis. J Clin Invest. 1976; 57:1148-1157.
- [54]Weyand CM, Hicok KC, Conn DL, Goronzy JJ. The influence of HLA-DRB1 genes on disease severity in rheumatoid arthritis. Ann Intern Med. 1992; 117:801-803.
- [55]Vogl T, Ludwig S, Goebeler M, Strey A, Thorey IS, Reichelt R et al.. MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood. 2004; 104:4260-4268.
- [56]Ryckman C, Vandal K, Rouleau P, Talbot M, Tessier PA. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J Immunol. 2003; 170:3233-3242.
- [57]Li X, Li M, Huang S, Qiao S, Qin Z, Kang C et al.. The effect of buffalo CD14 shRNA on the gene expression of TLR4 signal pathway in buffalo monocyte/macrophages. Cell Mol Biol Lett. 2014; 19(4):623-37.
- [58]Ghavami S, Rashedi I, Dattilo BM, Eshraghi M, Chazin WJ, Hashemi M et al.. S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukoc Biol. 2008; 83:1484-1492.
- [59]Tamaki Y, Takakubo Y, Hirayama T, Konttinen YT, Goodman SB, Yamakawa M et al.. Expression of Toll-like receptors and their signaling pathways in rheumatoid synovitis. J Rheumatol. 2011; 38:810-820.
- [60]Kang KY, Woo JW, Park SH. S100A8/A9 as a biomarker for synovial inflammation and joint damage in patients with rheumatoid arthritis. Korean J Intern Med. 2014; 29:12-19.
- [61]Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS et al.. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988; 31:315-324.
- [62]Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K et al.. Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Arthritis Rheum. 1986; 29:1039-1049.
- [63]Altman R, Alarcón G, Appelrouth D, Bloch D, Borenstein D, Brandt K et al.. The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hip. Arthritis Rheum. 1991; 34:505-514.
- [64]Kawase H, Fujii K, Miyamoto M, Kubota KC, Hirano S, Kondo S et al.. Differential LC-MS-based proteomics of surgical human cholangiocarcinoma tissues. J Proteome Res. 2009; 8:4092-4103.
PDF