期刊论文详细信息
GigaScience
How machine learning is shaping cognitive neuroimaging
Bertrand Thirion1  Gael Varoquaux1 
[1] Parietal, INRIA, NeuroSpin, bat 145 CEA Saclay, 91191 Gif sur Yvette, France
关键词: Encoding;    Decoding;    fMRI;    Cognition;    Neuroimaging;    Machine learning;   
Others  :  1118575
DOI  :  10.1186/2047-217X-3-28
 received in 2014-07-18, accepted in 2014-10-23,  发布年份 2014
PDF
【 摘 要 】

Functional brain images are rich and noisy data that can capture indirect signatures of neural activity underlying cognition in a given experimental setting. Can data mining leverage them to build models of cognition? Only if it is applied to well-posed questions, crafted to reveal cognitive mechanisms. Here we review how predictive models have been used on neuroimaging data to ask new questions, i.e., to uncover new aspects of cognitive organization. We also give a statistical learning perspective on these progresses and on the remaining gaping holes.

【 授权许可】

   
2014 Varoquaux and Thirion; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150206040712715.pdf 459KB PDF download
Figure 1. 70KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE: Statistical Parametric Mapping: The Analysis of Functional Brain mages. London: Academic Press; 2007.
  • [2]Poldrack RA, Mumford JA, Nichols TE: Handbook of Functional MRI Data Analysis. Cambridge: University Press; 2011.
  • [3]Hubel DH, Wiesel TN: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 1962, 160:106.
  • [4]Logothetis NK, Pauls J, Poggio T: Shape representation in the inferior temporal cortex of monkeys. Curr Biol 1995, 5:552.
  • [5]Georgopoulos AP, Schwartz AB, Kettner RE: Neuronal population coding of movement direction. Science 1986, 233:1416.
  • [6]Freeman J, Brouwer GJ, Heeger DJ, Merriam EP: Orientation decoding depends on maps, not columns. J Neurosci 2011, 31:4792.
  • [7]Tononi G, Edelman GM, Sporns O: Complexity and coherency: integrating information in the brain. Trends Cogn Sci 1998, 2:474.
  • [8]Naselaris T, Kay KN, Nishimoto S, Gallant JL: Encoding and decoding in fMRI. Neuroimage 2011, 56:400.
  • [9]Edelman S, Grill-Spector K, Kushnir T, Malach R: Toward direct visualization of the internal shape representation space by fMRI. Psychobiology 1998, 26:309.
  • [10]O’Doherty JP, Hampton A, Kim H: Model-based fMRI and its application to reward learning and decision making. Ann N Y Acad Sci 2007, 1104:35.
  • [11]Kay KN, Naselaris T, Prenger RJ, Gallant JL: Identifying natural images from human brain activity. Nature 2008, 452:352.
  • [12]Mitchell TM, Shinkareva SV, Carlson A, Chang K-M, Malave VL, Mason RA, Just MA: Predicting human brain activity associated with the meanings of nouns. Science 2008, 320:1191.
  • [13]Nishimoto S, Vu AT, Naselaris T, Benjamini Y, Yu B, Gallant JL: Reconstructing visual experiences from brain activity evoked by natural movies. Curr Biol 2011, 21:1641.
  • [14]Huth AG, Nishimoto S, Vu AT, Gallant JL: A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron 2012, 76:1210.
  • [15]Marr D: Vision: A Computational Investigation Into the Human Representation and Processing of Visual Information. Cambridge: The MIT Press; 1982.
  • [16]LeCun Y, Kavukcuoglu K, Farabet C: Convolutional networks and applications in vision. In Circuits and Systems (ISCAS). IEEE; 2010:253-253.
  • [17]Yamins DL, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ: Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc Natl Acad Sci 2014, 111:201403112.
  • [18]Dumoulin SO, Wandell BA: Population receptive field estimates in human visual cortex. Neuroimage 2008, 39(2):647-660.
  • [19]Abbott L: Decoding neuronal firing and modelling neural networks. Q Rev Biophys 1994, 27:291.
  • [20]Dehaene S, Le Clec’H G, Cohen L, Poline J-B, van de Moortele P-F, Le Bihan D: Inferring behavior from functional brain images. Nat Neurosci 1998, 1:549.
  • [21]Thirion B, Flandin G, Pinel P, Roche A, Ciuciu P, Poline JB: Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets. Hum Brain Map 2006, 27:678.
  • [22]Haxby JV, Gobbini IM, Furey ML, Ishai A, Schouten JL, Pietrini P: Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 2001, 293(5539):2425.
  • [23]Kriegeskorte N, Goebel R, Bandettini P: Information-based functional brain mapping. Proc Natl Acad Sci U S A 2006, 103:3863.
  • [24]Norman KA, Polyn SM, Detre GJ, Haxby JV: Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci 2006, 10:424.
  • [25]Peelen MV, Downing PE: Using multi-voxel pattern analysis of fMRI data to interpret overlapping functional activations. Trends Cogn Sci 2007, 11:4.
  • [26]Poldrack R: Can cognitive processes be inferred from neuroimaging data? Trends Cogn Sci 2006, 10:59.
  • [27]Poldrack RA: Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron 2011, 72:692.
  • [28]Wager TD, Atlas LY, Lindquist MA, Roy M, Woo C-W, Kross E: An fMRI-based neurologic signature of physical pain. N Engl J Med 2013, 368:1388.
  • [29]Poldrack RA, Halchenko YO, Hanson SJ: Decoding the large-scale structure of brain function by classifying mental states across individuals. Psychol Sci 2009, 20:1364.
  • [30]Schwartz Y, Thirion B, Varoquaux G: Mapping cognitive ontologies to and from the brain. In NIPS. Curran Associates, Inc.; 2013.
  • [31]Poldrack RA, Barch DM, Mitchell JP, Wager TD, Wagner AD, Devlin JT, Cumba C, Koyejo O, Milham MP: Toward open sharing of task-based fMRI data: the OpenfMRI project. Frontiers Neuroinformatics 2013,. 7
  • [32]Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD: Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 2011, 8:665.
  • [33]Haufe S, Meinecke F, Görgen K, Däne S, Haynes J-D, Blankertz B, Bießmann F: On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage 2014, 87:96-110.
  • [34]Varoquaux G, Gramfort A, Thirion B: Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering. In ICML. Omnipress; 2012:1375-1375.
  • [35]Grosenick L, Klingenberg B, Katovich K, Knutson B, Taylor JE: Interpretable whole-brain prediction analysis with graphnet. NeuroImage 2013, 72:304.
  • [36]Michel V, Gramfort A, Varoquaux G, Eger E, Thirion B: Total variation regularization for fMRI-based prediction of behavior. Med Imaging IEEE Trans 2011, 30:1328.
  • [37]Gramfort A, Thirion B, Varoquaux G: Identifying predictive regions from fMRI with TV-L1 prior. In Pattern Recognition in Neuroimaging (PRNI). IEEE; 2013:17-17.
  • [38]Haxby JV, Connolly AC, Guntupalli JS: Decoding neural representational spaces using multivariate pattern analysis. Annu Rev Neurosci 2014, 37:435-456.
  • [39]Davis T, Poldrack RA: Measuring neural representations with fMRI: practices and pitfalls. Ann N Y Acad Sci 2013, 1296:108.
  • [40]Dehaene S, Naccache L: Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 2001, 79:1.
  • [41]Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kötter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, et al.: Toward discovery science of human brain function. Proc Ntl Acad Sci 2010, 107:4734.
  • [42]Greicius M: Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 2008, 21:424.
  • [43]Sadaghiani S, Hesselmann G, Friston KJ, Kleinschmidt A: The relation of ongoing brain activity, evoked neural responses, and cognition. Frontiers Syst Neuroscience 2010,. 4
  • [44]Sporns O, Tononi G, Kotter R: The human connectome: a structural description of the human brain. PLoS Comput Biol 2005, 1:42.
  • [45]Varoquaux G, Craddock RC: Learning and comparing functional connectomes across subjects. NeuroImage 2013, 80:405.
  • [46]Varoquaux G, Gramfort A, Poline JB, Thirion B: Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks? J Physiol - Paris 2012, 106:212.
  • [47]Varoquaux G, Gramfort A, Poline JB, Thirion B: Brain covariance selection: better individual functional connectivity models using population prior. In NIPS. Curran Associates, Inc.; 2010.
  • [48]Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW: Network modelling methods for fMRI. Neuroimage 2011, 54:875.
  • [49]Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995, 34:53719.
  • [50]Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL: A default mode of brain function. Proc Natl Acad Sci U S A 2001, 98:676.
  • [51]Kiviniemi V, Kantola JH, Jauhiainen J, Hyvärinen A, Tervonen O: Independent component analysis of nondeterministic fmri signal sources. Neuroimage 2003, 19:253.
  • [52]Beckmann CF, DeLuca M, Devlin JT, Smith SM: Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B 2005, 360:1001.
  • [53]Kiviniemi V, Starck T, Remes J, Long X, Nikkinen J, Haapea M, Veijola J, Moilanen I, Isohanni M, Zang YF, Tervonen O: Functional segmentation of the brain cortex using high model order group PICA. Hum Brain Map 2009, 30:3865.
  • [54]Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysio 2011, 106:1125.
  • [55]Craddock RC, James GA, Holtzheimer PE, Hu XP, Mayberg HS: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Human Brain Mapping 2012, 33:1914.
  • [56]Varoquaux G, Gramfort A, Pedregosa F, Michel V, Thirion B: Multi-subject dictionary learning to segment an atlas of brain spontaneous activity. In Inf Proc Med Imag. IEEE; 2011:562-562.
  • [57]Abraham A, Dohmatob E, Thirion B, Samaras D, Varoquaux G: Extracting brain regions from rest fMRI with total-variation constrained dictionary learning. In MICCAI. Frontiers Media S.A.; 2013:607-607.
  • [58]Thirion B, Varoquaux G, Dohmatob E, Poline J: Which fMRI clustering gives good brain parcellations? Name: Frontiers Neurosci 2014, 8:167.
  • [59]Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF: Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci 2009, 106:13040.
  • [60]Varoquaux G, Schwartz Y, Pinel P, Thirion B: Cohort-level brain mapping: learning cognitive atoms to single out specialized regions. In Information Processing in Medical Imaging. Springer; 2013:438-438.
  • [61]Varoquaux G, Sadaghiani S, Pinel P, Kleinschmidt A, Poline JB, Thirion B: A group model for stable multi-subject ICA on fMRI datasets. NeuroImage 2010, 51:288.
  • [62]Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM: Advances in functional and structural mr image analysis and implementation as FSL. Neuroimage 2004, 23:208-219.
  • [63]Cox RW: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 1996, 29:162.
  • [64]LaConte SM: Decoding fMRI brain states in real-time. Neuroimage 2011, 56:440.
  • [65]Hanke M, Halchenko YO, Sederberg PB, Hanson SJ, Haxby JV, Pollmann S: PyMVPA: A python toolbox for multivariate pattern analysis of fmri data. Neuroinformatics 2009, 7:37.
  • [66]Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E: Scikit-learn: machine learning in Python. J Mach Learn Res 2011, 12:2825.
  • [67]Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, Gramfort A, Thirion B, Varoquaux G: Machine learning for neuroimaging with scikit-learn. Frontiers Neuroinformatics 2014,. 8
  文献评价指标  
  下载次数:4次 浏览次数:15次