BMC Veterinary Research | |
Dietary inulin affects the intestinal microbiota in sows and their suckling piglets | |
Jürgen Zentek1  Wilfried Vahjen1  Nadine Paßlack1  | |
[1] Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, Berlin, 14195, Germany | |
关键词: Enterococci; Suckling piglets; Sows; Intestinal microbiota; Inulin; | |
Others : 1136314 DOI : 10.1186/s12917-015-0351-7 |
|
received in 2014-07-24, accepted in 2015-02-05, 发布年份 2015 | |
【 摘 要 】
Background
Several studies have focused on the effects of dietary inulin on the intestinal microbiota of weaned piglets. In the present study, inulin was added to a diet for gestating and lactating sows, expecting not only effects on the faecal microbiota of sows, but also on the bacterial cell numbers in the gastrointestinal tract of their piglets during the suckling period. Sows were fed a diet without (n = 11) or with (n = 10) 3% inulin, and selected bacterial groups were determined in their faeces ante and post partum. Suckling piglets, 8 per group, were euthanised on day 10 after birth to analyse digesta samples of the gastrointestinal tract.
Results
Dietary inulin increased the cell numbers of enterococci, both, in the faeces of the sows during gestation and lactation, and in the caecum of the piglets (P ≤ 0.05). Moreover, higher cell numbers of eubacteria (stomach) and C. leptum (caecum), but lower cell numbers of enterobacteria and L. amylovorus (stomach) were detected in the digesta of the piglets in the inulin group (P ≤ 0.05).
Conclusions
In conclusion, inulin seems to have the potential to influence the gastrointestinal microbiota of suckling piglets through the diet of their mother, showing the importance of the mother-piglet couple for the microbial development. Early modulation of the intestinal microbiota could be especially interesting with regard to the critical weaning time.
【 授权许可】
2015 Paßlack et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150312040136138.pdf | 386KB | download |
【 参考文献 】
- [1]Roberfroid MB, Van Loo JA, Gibson GR: The bifidogenic nature of chicory inulin and its hydrolysis products. J Nutr 1998, 128:11-9.
- [2]Van Loo J, Cummings J, Delzenne N, Englyst H, Franck A, Hopkins M, et al.: Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94-1095). Br J Nutr 1999, 81:121-32.
- [3]Flickinger EA, Van Loo J, Fahey GC Jr: Nutritional responses to the presence of inulin and oligofructose in the diets of domesticated animals: a review. Crit Rev Food Sci Nutr 2003, 43:19-60.
- [4]Tzortzis G, Goulas AK, Gee JM, Gibson GR: A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo. J Nutr 2005, 135:1726-31.
- [5]Tako E, Glahn RP, Welch RM, Lei X, Yasuda K, Miller DD: Dietary inulin affects the expression of intestinal enterocyte iron transporters, receptors and storage protein and alters the microbiota in the pig intestine. Br J Nutr 2008, 99:472-80.
- [6]Patterson JK, Yasuda K, Welch RM, Miller DD, Lei XG: Supplemental dietary inulin of variable chain lengths alters intestinal bacterial populations in young pigs. J Nutr 2010, 140:2158-61.
- [7]Vhile SG, Kjos NP, Sørum H, Overland M: Feeding Jerusalem artichoke reduced skatole level and changed intestinal microbiota in the gut of entire male pigs. Animal 2012, 6:807-14.
- [8]Branner GR, Böhmer BM, Erhardt W, Henke J, Roth-Maier DA: Investigation on the precaecal and faecal digestibility of lactulose and inulin and their influence on nutrient digestibility and microbial characteristics. Arch Anim Nutr 2004, 58:353-66.
- [9]Eberhard M, Hennig U, Kuhla S, Brunner RM, Kleessen B, Metges CC: Effect of inulin supplementation on selected gastric, duodenal, and caecal microbiota and short chain fatty acid pattern in growing piglets. Arch Anim Nutr 2007, 61:235-46.
- [10]Lönnerdal B, Keen CL, Hurley LS: Iron, copper, zinc, and manganese in milk. Annu Rev Nutr 1981, 1:149-74.
- [11]Kirchgessner M, Roth-Maier DA, Grassmann E, Mader H: Fe-, Cu-, Zn-, Ni- and Mn-concentrations in sow’s milk during a five-week lactation period. Arch Tierernahr 1982, 32:853-8.
- [12]Klobasa F, Werhahn E, Butler JE: Composition of sow milk during lactation. J Anim Sci 1987, 64:1458-66.
- [13]Salmon H, Berri M, Gerdts V, Meurens F: Humoral and cellular factors of maternal immunity in swine. Dev Comp Immunol 2009, 33:384-93.
- [14]Mackie RI, Sghir A, Gaskins HR: Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 1999, 69:1035S-45.
- [15]Mori K, Ito T, Miyamoto H, Ozawa M, Wada S, Kumagai Y, et al.: Oral administration of multispecies microbial supplements to sows influences the composition of gut microbiota and fecal organic acids in their post-weaned piglets. J Biosci Bioeng 2011, 112:145-50.
- [16]Baker AA, Davis E, Spencer JD, Moser R, Rehberger T: The effect of a Bacillus-based direct-fed microbial supplemented to sows on the gastrointestinal microbiota of their neonatal piglets. J Anim Sci 2013, 91:3390-9.
- [17]Starke IC, Pieper R, Neumann K, Zentek J, Vahjen W: Individual responses of mother sows to a probiotic Enterococcus faecium strain lead to different microbiota composition in their offspring. Benefic Microbes 2013, 4:345-56.
- [18]Böhmer BM, Branner GR, Roth-Maier DA: Precaecal and faecal digestibility of inulin (DP 10–12) or an inulin/Enterococcus faecium mix and effects on nutrient digestibility and microbial gut flora. J Anim Physiol Anim Nutr (Berl) 2005, 89:388-96.
- [19]Mair C, Plitzner C, Domig KJ, Schedle K, Windisch W: Impact of inulin and a multispecies probiotic formulation on performance, microbial ecology and concomitant fermentation patterns in newly weaned piglets. J Anim Physiol Anim Nutr (Berl) 2010, 94:164-77.
- [20]Verdonk JM, Shim SB, van Leeuwen P, Verstegen MW: Application of inulin-type fructans in animal feed and pet food. Br J Nutr 2005, 93(Suppl 1):S125-38.
- [21]Loh G, Eberhard M, Brunner RM, Hennig U, Kuhla S, Kleessen B, et al.: Inulin alters the intestinal microbiota and short-chain fatty acid concentrations in growing pigs regardless of their basal diet. J Nutr 2006, 136:1198-202.
- [22]Gesellschaft für Ernährungsphysiologie. Empfehlungen zur Energie- und Nährstoffversorgung von Schweinen. Frankfurt am Main: DLG-Verlag; 2006.
- [23]Lyons SR, Griffen AL, Leysi EJ: Quantitative real-time PCR for Porphyromonas gingivalis and total bacteria. J Clin Microbiol 2000, 38:2362-5.
- [24]Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP: Detection of lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 2001, 67:2578-85.
- [25]Rinttilä T, Kassinen A, Malinen E, Krogius L, Palva A: Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 2004, 97:1166-77.
- [26]Song Y, Liu C, Finegold SM: Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol 2004, 70:6459-65.
- [27]Walter J, Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Loach DM, Munro K, et al.: Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microbiol 2000, 66:297-303.
- [28]Vahjen W, Taras D, Simon O: Effect of the probiotic Enterococcus faecium NCIMB10415 on cell numbers of total Enterococcus spp., E. faecium and E. faecalis in the intestine of piglets. Curr Issues Intest Microbiol 2007, 8:1-8.