期刊论文详细信息
BMC Microbiology
φX216, a P2-like bacteriophage with broad Burkholderia pseudomallei and B. mallei strain infectivity
Herbert P Schweizer2  Kent J Voorhees4  Shannon L Johnson3  David DeShazer1  Christopher R Cox4  Brian H Kvitko2 
[1] United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA;Department of Microbiology, Immunology and Pathology, Colorado State University, IDRC at Foothills Campus, Fort Collins, CO, 80523-0922, USA;Los Alamos National Laboratory Genome Science Group, Joint Genomics Institute, Los Alamos, NM, USA;Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO, USA
关键词: Phage-based diagnostics;    Prophage distribution;    P2;    B. mallei;    Burkholderia pseudomallei;    Bacteriophage;   
Others  :  1144732
DOI  :  10.1186/1471-2180-12-289
 received in 2012-07-24, accepted in 2012-11-28,  发布年份 2012
PDF
【 摘 要 】

Background

Burkholderia pseudomallei and B. mallei are closely related Category B Select Agents of bioterrorism and the causative agents of the diseases melioidosis and glanders, respectively. Rapid phage-based diagnostic tools would greatly benefit early recognition and treatment of these diseases. There is extensive strain-to-strain variation in B. pseudomallei genome content due in part to the presence or absence of integrated prophages. Several phages have previously been isolated from B. pseudomallei lysogens, for example φK96243, φ1026b and φ52237.

Results

We have isolated a P2-like bacteriophage, φX216, which infects 78% of all B. pseudomallei strains tested. φX216 also infects B. mallei, but not other Burkholderia species, including the closely related B. thailandensis and B. oklahomensis. The nature of the φX216 host receptor remains unclear but evidence indicates that in B. mallei φX216 uses lipopolysaccharide O-antigen but a different receptor in B. pseudomallei. The 37,637 bp genome of φX216 encodes 47 predicted open reading frames and shares 99.8% pairwise identity and an identical strain host range with bacteriophage φ52237. Closely related P2-like prophages appear to be widely distributed among B. pseudomallei strains but both φX216 and φ52237 readily infect prophage carrying strains.

Conclusions

The broad strain infectivity and high specificity for B. pseudomallei and B. mallei indicate that φX216 will provide a good platform for the development of phage-based diagnostics for these bacteria.

【 授权许可】

   
2012 Kvitko et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150331005733348.pdf 743KB PDF download
Figure 3. 46KB Image download
Figure 2. 38KB Image download
Figure 1. 12KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Cheng AC, Currie BJ: Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 2005, 18(2):383-416.
  • [2]Wiersinga WJ, van der Poll T, White NJ, Day NP, Peacock SJ: Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat Rev Microbiol 2006, 4(4):272-282.
  • [3]Dance D: Melioidosis and glanders as possible biological weapons. In Bioterrorism and infectious agents A new dilemma for the 21st century. Edited by Fong WAK. New York: Springer Science and Business Media; 2005:99-145.
  • [4]Whitlock GC, Estes DM, Torres AG: Glanders: off to the races with Burkholderia mallei. FEMS Microbiol Lett 2007, 277(2):115-122.
  • [5]Sim SH, Yu Y, Lin CH, Karuturi RK, Wuthiekanun V, Tuanyok A, Chua HH, Ong C, Paramalingam SS, Tan G, et al.: The core and accessory genomes of Burkholderia pseudomallei: implications for human melioidosis. PLoS Pathog 2008, 4(10):e1000178.
  • [6]Tuanyok A, Leadem BR, Auerbach RK, Beckstrom-Sternberg SM, Beckstrom-Sternberg JS, Mayo M, Wuthiekanun V, Brettin TS, Nierman WC, Peacock SJ, et al.: Genomic islands from five strains of Burkholderia pseudomallei. BMC Genomics 2008, 9:566. BioMed Central Full Text
  • [7]Tumapa S, Holden MT, Vesaratchavest M, Wuthiekanun V, Limmathurotsakul D, Chierakul W, Feil EJ, Currie BJ, Day NP, Nierman WC, et al.: Burkholderia pseudomallei genome plasticity associated with genomic island variation. BMC Genomics 2008, 9:190. BioMed Central Full Text
  • [8]Ronning CM, Losada L, Brinkac L, Inman J, Ulrich RL, Schell M, Nierman WC, Deshazer D: Genetic and phenotypic diversity in Burkholderia: contributions by prophage and phage-like elements. BMC Microbiol 2010, 10:202. BioMed Central Full Text
  • [9]Holden MT, Titball RW, Peacock SJ, Cerdeno-Tarraga AM, Atkins T, Crossman LC, Pitt T, Churcher C, Mungall K, Bentley SD, et al.: Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci U S A 2004, 101(39):14240-14245.
  • [10]DeShazer D: Genomic diversity of Burkholderia pseudomallei clinical isolates: subtractive hybridization reveals a Burkholderia mallei-specific prophage in B. pseudomallei 1026b. J Bacteriol 2004, 186(12):3938-3950.
  • [11]Losada L, Ronning CM, DeShazer D, Woods D, Fedorova N, Kim HS, Shabalina SA, Pearson TR, Brinkac L, Tan P, et al.: Continuing evolution of Burkholderia mallei through genome reduction and large-scale rearrangements. Genome Biol Evol 2010, 2:102-116.
  • [12]Woods DE, Jeddeloh JA, Fritz DL, DeShazer D: Burkholderia thailandensis E125 harbors a temperate bacteriophage specific for Burkholderia mallei. J Bacteriol 2002, 184(14):4003-4017.
  • [13]Gatedee J, Kritsiriwuthinan K, Galyov EE, Shan J, Dubinina E, Intarak N, Clokie MR, Korbsrisate S: Isolation and characterization of a novel podovirus which infects Burkholderia pseudomallei. Virol J 2011, 8:366. BioMed Central Full Text
  • [14]Yordpratum U, Tattawasart U, Wongratanacheewin S, Sermswan RW: Novel lytic bacteriophages from soil that lyse Burkholderia pseudomallei. FEMS Microbiol Lett 2011, 314(1):81-88.
  • [15]Hayden HS, Lim R, Brittnacher MJ, Sims EH, Ramage ER, Fong C, Wu Z, Crist E, Chang J, Zhou Y, et al.: Evolution of Burkholderia pseudomallei in recurrent melioidosis. PLoS One 2012, 7(5):e36507.
  • [16]McCombie RL, Finkelstein RA, Woods DE: Multilocus sequence typing of historical Burkholderia pseudomallei isolates collected in Southeast Asia from 1964 to 1967 provides insight into the epidemiology of melioidosis. J Clin Microbiol 2006, 44(8):2951-2962.
  • [17]Sezonov G, Joseleau-Petit D, D'Ari R: Escherichia coli physiology in Luria-Bertani broth. J Bacteriol 2007, 189(23):8746-8749.
  • [18]Propst KL, Mima T, Choi KH, Dow SW, Schweizer HP: A Burkholderia pseudomallei ΔpurM mutant is avirulent in immunocompetent and immunodeficient animals: candidate strain for exclusion from select-agent lists. Infect Immun 2010, 78(7):3136-3143.
  • [19]Carlson K (Ed): Working with Bacteriophages: Common Techniques and Methodological Approaches. New York: CRC Press; 2005.
  • [20]Kvitko BH, Goodyear A, Propst KL, Dow SW, Schweizer HP: Burkholderia pseudomallei known siderophores and hemin uptake are dispensable for lethal murine melioidosis. PLoS Negl Trop Dis 2012, 6(6):e1715.
  • [21]Horton RM: PCR-mediated recombination and mutagenesis. SOEing together tailor-made genes. Mol Biotechnol 1995, 3(2):93-99.
  • [22]Chantratita N, Rholl DA, Sim B, Wuthiekanun V, Limmathurotsakul D, Amornchai P, Thanwisai A, Chua HH, Ooi WF, Holden MT, et al.: Antimicrobial resistance to ceftazidime involving loss of penicillin-binding protein 3 in Burkholderia pseudomallei. Proc Natl Acad Sci USA 2011, 108(41):17165-17170.
  • [23]Yamamoto KR, Alberts BM, Benzinger R, Lawhorne L, Treiber G: Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 1970, 40(3):734-744.
  • [24]Kaslow DC: A rapid biochemical method for purifying lambda DNA from phage lysates. Nucleic Acids Res 1986, 14(16):6767.
  • [25]Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 1985, 33(1):103-119.
  • [26]Pierson VL, Barcak GL: Development of E. coli host strains tolerating unstable DNA sequences on ColE1 vectors. Focus 1999, 21(1):18-19.
  • [27]Sambrook J, Russell DW: Molecular Cloning. 3rd edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001.
  • [28]Besemer J, Borodovsky M: Heuristic approach to deriving models for gene finding. Nucleic Acids Res 1999, 27(19):3911-3920.
  • [29]Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18(5):821-829.
  文献评价指标  
  下载次数:23次 浏览次数:38次