期刊论文详细信息
BMC Medicine
Developmental heterochrony and the evolution of autistic perception, cognition and behavior
Bernard Crespi1 
[1] Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
关键词: Heterochrony;    Evolution;    Development;    Autism;   
Others  :  857047
DOI  :  10.1186/1741-7015-11-119
 received in 2013-02-08, accepted in 2013-04-22,  发布年份 2013
PDF
【 摘 要 】

Background

Autism is usually conceptualized as a disorder or disease that involves fundamentally abnormal neurodevelopment. In the present work, the hypothesis that a suite of core autism-related traits may commonly represent simple delays or non-completion of typical childhood developmental trajectories is evaluated.

Discussion

A comprehensive review of the literature indicates that, with regard to the four phenotypes of (1) restricted interests and repetitive behavior, (2) short-range and long-range structural and functional brain connectivity, (3) global and local visual perception and processing, and (4) the presence of absolute pitch, the differences between autistic individuals and typically developing individuals closely parallel the differences between younger and older children.

Summary

The results of this study are concordant with a model of ‘developmental heterochrony’, and suggest that evolutionary extension of child development along the human lineage has potentiated and structured genetic risk for autism and the expression of autistic perception, cognition and behavior.

【 授权许可】

   
2013 Crespi; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723063107170.pdf 429KB PDF download
67KB Image download
【 图 表 】

【 参考文献 】
  • [1]Frith U: Autism: Explaining the Enigma. Oxford, UK: Blackwell; 1989.
  • [2]Geschwind DH: Advances in autism. Annu Rev Med 2009, 60:367-380.
  • [3]Ronald A, Hoekstra RA: Autism spectrum disorders and autistic traits: a decade of new twin studies. Am J Med Genet B Neuropsychiatr Genet 2011, 156B:255-274.
  • [4]Happé F: Autism: An Introduction to Psychological Theory. London, UK: UCL Press; 1994.
  • [5]Happé F: Autism: cognitive deficit or cognitive style? Trends Cogn Sci 1999, 3:216-222.
  • [6]Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer R: Why are autism spectrum conditions more prevalent in males? PLoS Biol 2011, 9:e1001081.
  • [7]Mottron L, Dawson M, Soulières I, Hubert B, Burack J: Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception. J Autism Dev Disord 2006, 36:27-43.
  • [8]Mottron L, Bouvet L, Bonnel A, Samson F, Burack JA, Dawson M, Heaton P: Veridical mapping in the development of exceptional autistic abilities. Neurosci Biobehav Rev 2012, 37:209-228.
  • [9]Ronald A, Happé F, Price TS, Baron-Cohen S, Plomin R: Phenotypic and genetic overlap between autistic traits at the extremes of the general population. J Am Acad Child Adolesc Psychiatry 2006, 45:1206-1214.
  • [10]Tomasello M, Carpenter M, Call J, Behne T, Moll H: Understanding and sharing intentions: the origins of cultural cognition. Behav Brain Sci 2005, 28:675-691.
  • [11]Crespi B: One hundred years of insanity: genomic, psychological, and evolutionary models of autism in relation to schizophrenia. In Handbook of Schizophrenia Spectrum Disorders, Volume I. Conceptual Issues and Neurobiological Advances. Edited by Ritsner MS. New York, NY: Springer; 2011:163-185.
  • [12]Crespi B, Badcock C: Psychosis and autism as diametrical disorders of the social brain. Behav Brain Sci 2008, 31:241-320.
  • [13]Bogin B, Smith BH: Evolution of the human life cycle. Am J Hum Biol 1996, 8:703-716.
  • [14]Godfrey LR, Sutherland MR: Paradox of peramorphic paedomorphosis: heterochrony and human evolution. Am J Phys Anthropol 1996, 99:17-42.
  • [15]Brüne M: Neoteny, psychiatric disorders and the social brain: hypotheses on heterochrony and the modularity of the mind. Anthropol Med 2000, 7:301-318.
  • [16]Burns JK: An evolutionary theory of schizophrenia: cortical connectivity, metarepresentation, and the social brain. Behav Brain Sci 2004, 27:831-885.
  • [17]Bjorklund DF: The role of immaturity in human development. Psychol Bull 1997, 122:153-169.
  • [18]Kanner L: Autistic disturbances of affective contact. Nerv Child 1943, 2:217-250.
  • [19]Evans DW, Leckman JF, Carter A, Reznick JS, Henshaw D, King RA, Pauls D: Ritual, habit, and perfectionism: the prevalence and development of compulsive-like behavior in normal young children. Child Dev 1997, 68:58-68.
  • [20]Glenn S, Cunningham C: Typical or pathological? Routinized and compulsive-like behaviors in children and young people with Down syndrome. Intellect Dev Disabil 2007, 45:246-256.
  • [21]Glenn S, Cunningham C, Nananidou A: A cross-sectional comparison of routinized and compulsive-like behaviours in typical children aged from 2 to 11 years. Eur J Dev Psychol 2012, 9:614-630.
  • [22]Leekam SR, Prior MR, Uljarevic M: Restricted and repetitive behaviors in autism spectrum disorders: a review of research in the last decade. Psychol Bull 2011, 137:562-593.
  • [23]Gesell A, Ames LB, Ilg FL: Infant and the Child in the Culture Today. New York, NY: Harper & Row; 1974.
  • [24]Evans DW, Elliott JM, Packard MG: Visual organization and perceptual closure are related to compulsive-like behavior in typically developing children. Merrill Palmer Q 2001, 47:323-335.
  • [25]Chen YH, Rodgers J, McConachie H: Restricted and repetitive behaviours, sensory processing and cognitive style in children with autism spectrum disorders. J Autism Dev Disord 2009, 39:635-642.
  • [26]Happé F, Ronald A, Plomin R: Time to give up on a single explanation for autism. Nat Neurosci 2006, 9:1218-1220.
  • [27]Nesse RM: Maladaptation and natural selection. Q Rev Biol 2005, 80:62-70.
  • [28]Courchesne E, Pierce K: Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol 2005, 15:225-230.
  • [29]Geschwind DH, Levitt P: Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 2007, 17:103-111.
  • [30]Neul JL: Unfolding neurodevelopmental disorders: the mystery of developing connections. Nat Med 2011, 17:1353-1355.
  • [31]Testa-Silva G, Loebel A, Giugliano M, de Kock CP, Mansvelder HD, Meredith RM: Hyperconnectivity and slow synapses during early development of medial prefrontal cortex in a mouse model for mental retardation and autism. Cereb Cortex 2012, 22:1333-1342.
  • [32]Barttfeld P, Wicker B, Cukier S, Navarta S, Lew S, Sigman M: A big-world network in ASD: dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections. Neuropsychologia 2011, 49:254-263.
  • [33]McGrath J, Johnson K, Ecker C, O’Hanlon E, Gill M, Gallagher L, Garavan H: Atypical visuospatial processing in autism: insights from functional connectivity analysis. Autism Res 2012, 5:314-330.
  • [34]von Dem Hagen EA, Stoyanova RS, Baron-Cohen S, Calder AJ: Reduced functional connectivity within and between ‘social’ resting state networks in autism spectrum conditions. Soc Cogn Affect NeurosciIn press
  • [35]Washington SD, Gordon EM, Brar J, Warburton S, Sawyer AT, Wolfe A, Mease-Ference ER, Girton L, Hailu A, Mbwana J, Gaillard WD, Kalbfleisch ML, Vanmeter JW: Dysmaturation of the default mode network in autism. Hum Brain MappIn press
  • [36]Froehlich W, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, Miller J, Fedele A, Collins J, Smith K, Lotspeich L, Croen LA, Ozonoff S, Lajonchere C, Grether JK, Hallmayer J: Head circumferences in twins with and without autism spectrum disorders. J Autism Dev DisordIn press
  • [37]Casanova M, Trippe J: Radial cytoarchitecture and patterns of cortical connectivity in autism. Philos Trans R Soc Lond B Biol Sci 2009, 364:1433-1436.
  • [38]Wass S: Distortions and disconnections: disrupted brain connectivity in autism. Brain Cogn 2011, 75:18-28.
  • [39]Rudie JD, Hernandez LM, Brown JA, Beck-Pancer D, Colich NL, Gorrindo P, Thompson PM, Geschwind DH, Bookheimer SY, Levitt P, Dapretto M: Autism-associated promoter variant in MET impacts functional and structural brain networks. Neuron 2012, 75:904-915.
  • [40]Alexander-Bloch AF, Vértes PE, Stidd R, Lalonde F, Clasen L, Rapoport J, Giedd J, Bullmore ET, Gogtay N: The anatomical distance of functional connections predicts brain network topology in health and schizophrenia. Cereb Cortex 2013, 23:127-138.
  • [41]McGlashan TH, Hoffman RE: Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 2000, 57:637-648.
  • [42]Hoffman RE, McGlashan TH: Neural network models of schizophrenia. Neuroscientist 2001, 7:441-454.
  • [43]Siekmeier PJ, Hoffman RE: Enhanced semantic priming in schizophrenia: a computer model based on excessive pruning of local connections in association cortex. Br J Psychiatry 2002, 180:345-350.
  • [44]Hoffman RE, Hampson M: Functional connectivity studies of patients with auditory verbal hallucinations. Front Hum Neurosci 2011, 6:6.
  • [45]Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, Schlaggar BL, Petersen SE: Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol 2009, 5:e1000381.
  • [46]Supekar K, Musen M, Menon V: Development of large-scale functional brain networks in children. PLoS Biol 2009, 7:e1000157.
  • [47]Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL: Prediction of individual brain maturity using fMRI. Science 2010, 329:1358-1361.
  • [48]Power JD, Fair DA, Schlaggar BL, Petersen SE: The development of human functional brain networks. Neuron 2010, 67:735-748.
  • [49]Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Evans A, Rapoport J, Giedd J: Intellectual ability and cortical development in children and adolescents. Nature 2006, 440:676-679.
  • [50]Bullmore E, Sporns O: The economy of brain network organization. Nat Rev Neurosci 2012, 13:336-349.
  • [51]Herculano-Houzel S: The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc Natl Acad Sci USA 2012, 109:10661-10668.
  • [52]Preuss TM: The human brain: rewired and running hot. Ann N Y Acad Sci 2011, 1225:E182-E191.
  • [53]Happé F, Frith U: The neuropsychology of autism. Brain 1996, 119:1377-1400.
  • [54]Happé F, Frith U: The weak coherence account: detail-focused cognitive style in autism spectrum disorders. J Autism Dev Disord 2006, 36:5-25.
  • [55]Shah A, Frith U: An islet of ability in autistic children: a research note. J Child Psychol Psychiatry 1983, 24:613-620.
  • [56]Jolliffe T, Baron-Cohen S: Are people with autism and Asperger syndrome faster than normal on the Embedded Figures Test? J Child Psychol Psychiatry 1997, 38:527-534.
  • [57]Russell-Smith SN, Maybery MT, Bayliss DM, Sng AA: Support for a link between the local processing bias and social deficits in autism: an investigation of embedded figures test performance in non-clinical individuals. J Autism Dev Disord 2012, 42:2420-2430.
  • [58]Russell-Smith SN, Maybery MT, Bayliss DM: Are the autism and positive schizotypy spectra diametrically opposed in local versus global processing? J Autism Dev Disord 2010, 40:968-977.
  • [59]Brown SM, Bebko JM: Generalization, overselectivity, and discrimination in the autism phenotype: a review. Res Autism Spectr Disord 2012, 6:733-740.
  • [60]Mottron L, Burack JA, Iarocci G, Belleville S, Enns JT: Locally oriented perception with intact global processing among adolescents with high-functioning autism: evidence from multiple paradigms. J Child Psychol Psychiatry 2003, 44:904-913.
  • [61]Manjaly ZM, Bruning N, Neufang S, Stephan KE, Brieber S, Marshall JC, Kamp-Becker I, Remschmidt H, Herpertz-Dahlmann B, Konrad K, Fink GR: Neurophysiological correlates of relatively enhanced local visual search in autistic adolescents. Neuroimage 2007, 35:283-291.
  • [62]Wang L, Mottron L, Peng D, Berthiaume C, Dawson M: Local bias and local-to-global interference without global deficit: a robust finding in autism under various conditions of attention, exposure time, and visual angle. Cogn Neuropsychol 2007, 24:550-574.
  • [63]Liu Y, Cherkassky VL, Minshew NJ, Just MA: Autonomy of lower-level perception from global processing in autism: evidence from brain activation and functional connectivity. Neuropsychologia 2011, 49:2105-2111.
  • [64]Chamberlain R, McManus IC, Riley H, Rankin Q, Brunswick N: Vocal processing enhancements associated with superior observational drawing are due to enhanced perceptual functioning, not weak central coherence. Q J Exp Psychol (Hove)In press
  • [65]Granholm E, Perry W, Filoteo JV, Braff D: Hemispheric and attentional contributions to perceptual organization deficits on the global-local task in schizophrenia. Neuropsychology 1999, 13:271-281.
  • [66]Bellgrove MA, Vance A, Bradshaw JL: Local-global processing in early-onset schizophrenia: evidence for an impairment in shifting the spatial scale of attention. Brain Cogn 2003, 51:48-65.
  • [67]Johnson SC, Lowery N, Kohler C, Turetsky BI: Global-local visual processing in schizophrenia: evidence for an early visual processing deficit. Biol Psychiatry 2005, 58:937-946.
  • [68]Landgraf S, Amado I, Purkhart R, Ries J, Olié JP, van der Meer E: Visuo-spatial cognition in schizophrenia: confirmation of a preference for local information processing. Schizophr Res 2011, 127:163-170.
  • [69]Eimon MC, Eimon PL, Cermak SA: Performance of schizophrenic patients on a motor-free visual perception test. Am J Occup Ther 1983, 37:327-332.
  • [70]Pickup GJ, Frith C: Embedded figures and theory of mind in schizophrenia [abstract]. Schizophr Res 1999, 36:148.
  • [71]Longevialle-Hénin R, Bourdel MC, Willard D, Lôo H, Olié JP, Poirier MF, Krebs MO, Amado I: Visuospatial context processing in untreated schizophrenic patients and relation to disorganization syndrome. Encéphale 2005, 31:323-329.
  • [72]Loas G: Visual-spatial processing and dimensions of schizophrenia: a preliminary study on 62 schizophrenic subjects. Eur Psychiatry 2004, 9:370-373.
  • [73]Tsakanikos E, Reed P: Visuo-spatial processing and dimensions of schizotypy: figure-ground segregation as a function of psychotic-like features. Pers Individ Dif 2003, 35:703-712.
  • [74]Kovács I, Kozma P, Fehér A, Benedek G: Late maturation of visual spatial integration in humans. Proc Natl Acad Sci USA 1999, 96:12204-12209.
  • [75]Dukette D, Stiles J: The effects of stimulus density on children’s analysis of hierarchical patterns. Dev Sci 2001, 4:233-251.
  • [76]Neiworth JJ, Gleichman AJ, Olinick AS, Lamp KE: Global and local processing in adult humans (Homo sapiens), 5-year-old children (Homo sapiens), and adult cotton-top tamarins (Saguinus oedipus). J Comp Psychol 2006, 120:323-330.
  • [77]Poirel N, Mellet E, Houdé O, Pineau A: First came the trees, then the forest: developmental changes during childhood in the processing of visual local–global patterns according to the meaningfulness of the stimuli. Dev Psychol 2008, 44:245-253.
  • [78]Poirel N, Simon G, Cassotti M, Leroux G, Perchey G, Lanoë C, Lubin A, Turbelin MR, Rossi S, Pineau A, Houdé O: The shift from local to global visual processing in 6-year-old children is associated with grey matter loss. PLoS One 2011, 6:e20879.
  • [79]Harrison TB, Stiles J: Hierarchical forms processing in adults and children. J Exp Child Psychol 2009, 103:222-240.
  • [80]Scherf KS, Behrmann M, Kimchi R, Luna B: Emergence of global shape processing continues through adolescence. Child Dev 2009, 80:162-177.
  • [81]Vinter A, Puspitawati I, Witt A: Children’s spatial analysis of hierarchical patterns: construction and perception. Dev Psychol 2010, 46:1621-1631.
  • [82]Happé FG: Studying weak central coherence at low levels: children with autism do not succumb to visual illusions. A research note. J Child Psychol Psychiatry 1996, 37:873-877.
  • [83]Bölte S, Holtmann M, Poustka F, Scheurich A, Schmidt L: Gestalt perception and local–global processing in high-functioning autism. J Autism Dev Disord 2007, 37:1493-1504.
  • [84]Ishida R, Kamio Y, Nakamizo S: Perceptual distortions of visual illusions in children with high-functioning autism spectrum disorder. Psychologia 2009, 52:175-187.
  • [85]Mitchell P, Mottron L, Soulières I, Ropar D: Susceptibility to the Shepard illusion in participants with autism: reduced top-down influences within perception? Autism Res 2010, 3:113-119.
  • [86]Ropar D, Mitchell P: Susceptibility to illusions and performance on visuospatial tasks in individuals with autism. J Child Psychol Psychiatry 2001, 42:539-549.
  • [87]Ropar D, Mitchell P: Are individuals with autism and Asperger’s syndrome susceptible to visual illusions? J Child Psychol Psychiatry 1999, 40:1283-1293.
  • [88]Hoy JA, Hatton C, Hare D: Weak central coherence: a cross-domain phenomenon specific to autism? Autism 2004, 8:267-281.
  • [89]Witkin HA, Goodenough DR: Cognitive Styles: Essence and Origin. New York, NY: Wiley; 1981.
  • [90]Miller RJ: Gender differences in illusion response: the influence of spatial strategy and sex ratio. Sex Roles 2001, 44:209-225.
  • [91]Walter E, Dassonville P, Bochsler TM: A specific autistic trait that modulates visuospatial illusion susceptibility. J Autism Dev Disord 2009, 39:339-349.
  • [92]Weintraub DJ: Ebbinghaus illusion – context, contour, and age influence the judged size of a circle amidst circles. J Exp Psychol Hum Percept Perform 1979, 5:353-364.
  • [93]Kaldy Z, Kovacs I: Visual context integration is not fully developed in 4-year-old children. Perception 2003, 32:657-666.
  • [94]Doherty MJ, Campbell NM, Tsuji H, Phillips WA: The Ebbinghaus illusion deceives adults but not young children. Dev Sci 2010, 13:714-721.
  • [95]Brosvic GM, Dihoff RE, Fama J: Age-related susceptibility to the Muller-Lyer and the horizontal-vertical illusions. Percept Mot Skills 2002, 94:229-234.
  • [96]Phillips WA, Chapman KL, Berry PD: Size perception is less context-sensitive in males. Perception 2004, 33:79-86.
  • [97]Parnas J, Vianin P, Saebye D, Jansson L, Volmer-Larsen A, Bovet P: Visual binding abilities in the initial and advanced stages of schizophrenia. Acta Psychiatr Scand 2001, 103:171-180.
  • [98]Pessoa VF, Monge-Fuentes V, Simon CY, Suganuma E, Tavares MC: The Müller-Lyer illusion as a tool for schizophrenia screening. Rev Neurosci 2008, 19:91-100.
  • [99]Kantrowitz JT, Butler PD, Schecter I, Silipo G, Javitt DC: Seeing the world dimly: the impact of early visual deficits on visual experience in schizophrenia. Schizophr Bull 2009, 35:1085-1094.
  • [100]Chen Y, McBain R, Norton D, Ongur D: Schizophrenia patients show augmented spatial frame illusion for visual and visuomotor tasks. Neuroscience 2011, 172:419-426.
  • [101]Stalinski SM, Schellenberg EG: Music cognition: a developmental perspective. Top Cogn Sci 2012, 4:485-497.
  • [102]Heaton P, Hudry K, Ludlow A, Hill E: Superior discrimination of speech pitch and its relationship to verbal ability in autism spectrum disorders. Cogn Neuropsychol 2008, 25:771-782.
  • [103]Heaton P, Williams K, Cummins O, Happé F: Autism and pitch processing splinter skills: a group and subgroup analysis. Autism 2008, 12:203-219.
  • [104]Brown WA, Cammuso K, Sachs H, Winklosky B, Mullane J, Bernier R, Svenson S, Arin D, Rosen-Sheidley B, Folstein SE: Autism-related language, personality, and cognition in people with absolute pitch: results of a preliminary study. J Autism Dev Disord 2003, 33:163-167.
  • [105]Dohn A, Garza-Villarreal EA, Heaton P, Vuust P: Do musicians with perfect pitch have more autism traits than musicians without perfect pitch? An empirical study. PLoS One 2012, 7:e37961.
  • [106]Bates TC: The panmodal sensory imprecision hypothesis of schizophrenia: reduced auditory precision in schizotypy. Pers Individ Dif 2005, 38:437-449.
  • [107]Leitman DI, Foxe JJ, Butler PD, Saperstein A, Revheim N, Javitt DC: Sensory contributions to impaired prosodic processing in schizophrenia. Biol Psychiatry 2005, 58:56-61.
  • [108]Force RB, Venables NC, Sponheim SR: An auditory processing abnormality specific to liability for schizophrenia. Schizophr Res 2008, 103:298-310.
  • [109]Leitman DI, Sehatpour P, Higgins BA, Foxe JJ, Silipo G, Javitt DC: Sensory deficits and distributed hierarchical dysfunction in schizophrenia. Am J Psychiatry 2010, 167:818-827.
  • [110]Javitt DC: Sensory processing in schizophrenia: neither simple nor intact. Schizophr Bull 2009, 35:1059-1064.
  • [111]Javitt DC: When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. Annu Rev Clin Psychol 2009, 5:249-275.
  • [112]Saffran JR, Griepentrog GJ: Absolute pitch in infant auditory learning: evidence for developmental reorganization. Dev Psychol 2001, 37:74-85.
  • [113]Saffran JR: Musical learning and language development. Ann N Y Acad Sci 2003, 999:397-401.
  • [114]Stalinski SM, Schellenberg EG: Shifting perceptions: developmental changes in judgments of melodic similarity. Dev Psychol 2010, 46:1799-1803.
  • [115]Crozier JB, Robinson EA, Ewing V: Etiology of absolute judgments of pitch. Bulletin de Psychologie 1977, 30:792-803.
  • [116]Sakakibara A: Why are people able to acquire absolute pitch only during early childhood? Training age and acquisition of absolute pitch. Japanese J Educ Psychol 2004, 52:485-496.
  • [117]Bossomaier T, Snyder A: Absolute pitch accessible to everyone by turning off part of the brain? Organised Sound 2004, 9:181-189.
  • [118]Samson F, Mottron L, Soulières I, Zeffiro TA: Enhanced visual functioning in autism: an ALE meta-analysis. Hum Brain Mapp 2012, 33:1553-1581.
  • [119]Cascio C, McGlone F, Folger S, Tannan V, Baranek G, Pelphrey KA, Essick G: Tactile perception in adults with autism: a multidimensional psychophysical study. J Autism Dev Disord 2008, 38:127-137.
  • [120]Damarla SR, Keller TA, Kana RK, Cherkassky VL, Williams DL, Minshew NJ, Just MA: Cortical underconnectivity coupled with preserved visuospatial cognition in autism: evidence from an fMRI study of an embedded figures task. Autism Res 2010, 3:273-279.
  • [121]Riviere A: Language and theory of mind: vygotsky, skinner and beyond. In Behaviour Analysis in Theory and Practice: Contributions & Controversies. Edited by Blackman DE, Lejeune H. Hove, UK: Lawrence Erlbaum Associates; 1990:199-213.
  • [122]Fernyhough C: The dialogic mind: a dialogic approach to the higher mental functions. New Ideas Psychol 1996, 14:47-62.
  • [123]Woodard CR, Van Reet J: Object identification and imagination: an alternative to the meta-representational explanation of autism. J Autism Dev Disord 2011, 41:213-226.
  • [124]Watson P, Black G, Ramsden S, Barrow M, Super M, Kerr B, Clayton-Smith J: Angelman syndrome phenotype associated with mutations in MECP2: a gene encoding a methyl CpG binding protein. J Med Genet 2001, 38:224-228.
  • [125]Oliver C, Horsler K, Berg K, Bellamy G, Dick K, Griffiths E: Genomic imprinting and the expression of affect in Angelman syndrome: what’s in the smile? J Child Psychol Psychiatry 2007, 48:571-579.
  • [126]Bjorklund DF, Periss V, Causey K: The benefits of youth. Eur J Dev Psychol 2009, 6:120-137.
  • [127]Thompson-Schill SL, Ramscar M, Chrysikou EG: Cognition without control: when a little frontal lobe goes a long way. Curr Dir Psychol Sci 2009, 18:259-263.
  • [128]Somel M, Franz H, Yan Z, Lorenc A, Guo S, Giger T, Kelso J, Nickel B, Dannemann M, Bahn S, Webster MJ, Weickert CS, Lachmann M, Pääbo S, Khaitovich P: Transcriptional neoteny in the human brain. Proc Natl Acad Sci USA 2009, 106:5743-5748.
  • [129]Liu X, Somel M, Tang L, Yan Z, Jiang X, Guo S, Yuan Y, He L, Oleksiak A, Zhang Y, Li N, Hu Y, Chen W, Qiu Z, Pääbo S, Khaitovich P: Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques. Genome Res 2012, 22:611-622.
  • [130]Bufill E, Agustí J, Blesa R: Human neoteny revisited: the case of synaptic plasticity. Am J Hum Biol 2011, 23:729-739.
  • [131]Petanjek Z, Judaš M, Šimic G, Rasin MR, Uylings HB, Rakic P, Kostovic I: Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci USA 2011, 108:13281-13286.
  • [132]Miller DJ, Duka T, Stimpson CD, Schapiro SJ, Baze WB, McArthur MJ, Fobbs AJ, Sousa AM, Sestan N, Wildman DE, Lipovich L, Kuzawa CW, Hof PR, Sherwood CC: Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci USA 2012, 109:16480-16485.
  • [133]Gong X, Jia M, Ruan Y, Shuang M, Liu J, Wu S, Guo Y, Yang J, Ling Y, Yang X, Zhang D: Association between the FOXP2 gene and autistic disorder in Chinese population. Am J Med Genet B Neuropsychiatr Genet 2004, 127B:113-116.
  • [134]Amann-Zalcenstein D, Avidan N, Kanyas K, Ebstein RP, Kohn Y, Hamdan A, Ben-Asher E, Karni O, Mujaheed M, Segman RH, Maier W, Macciardi F, Beckmann JS, Lancet D, Lerer B: AHI1, a pivotal neurodevelopmental gene, and C6orf217 are associated with susceptibility to schizophrenia. Eur J Hum Genet 2006, 14:1111-11119.
  • [135]Spiteri E, Konopka G, Coppola G, Bomar J, Oldham M, Ou J, Vernes SC, Fisher SE, Ren B, Geschwind DH: Identification of the transcriptional targets of FOXP2: a gene linked to speech and language, in developing human brain. Am J Hum Genet 2007, 81:1144-1157.
  • [136]Alvarez Retuerto AI, Cantor RM, Gleeson JG, Ustaszewska A, Schackwitz WS, Pennacchio LA, Geschwind DH: Association of common variants in the Joubert syndrome gene (AHI1) with autism. Hum Mol Genet 2008, 17:3887-3896.
  • [137]Torri F, Akelai A, Lupoli S, Sironi M, Amann-Zalcenstein D, Fumagalli M, Dal Fiume C, Ben-Asher E, Kanyas K, Cagliani R, Cozzi P, Trombetti G, Strik Lievers L, Salvi E, Orro A, Beckmann JS, Lancet D, Kohn Y, Milanesi L, Ebstein RB, Lerer B, Macciardi F: Fine mapping of AHI1 as a schizophrenia susceptibility gene: from association to evolutionary evidence. FASEB J 2010, 24:3066-3082.
  • [138]Mukamel Z, Konopka G, Wexler E, Osborn GE, Dong H, Bergman MY, Levitt P, Geschwind DH: Regulation of MET by FOXP2: genes implicated in higher cognitive dysfunction and autism risk. J Neurosci 2011, 31:11437-11442.
  • [139]Somel M, Liu X, Khaitovich P: Human brain evolution: transcripts, metabolites and their regulators. Nat Rev Neurosci 2013, 14:112-127.
  • [140]Dollé P, Dierich A, LeMeur M, Schimmang T, Schuhbaur B, Chambon P, Duboule D: Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell 1993, 75:431-441.
  • [141]Alarcón M, Cantor RM, Liu J, Gilliam TC, Geschwind DH, Autism Genetic Research Exchange Consortium: Evidence for a language quantitative trait locus on chromosome 7q in multiplex autism families. Am J Hum Genet 2002, 70:60-71.
  • [142]Arango C, Moreno C, Martínez S, Parellada M, Desco M, Moreno D, Fraguas D, Gogtay N, James A, Rapoport J: Longitudinal brain changes in early-onset psychosis. Schizophr Bull 2008, 34:341-353.
  • [143]Levitt JJ, Bobrow L, Lucia D, Srinivasan P: A selective review of volumetric and morphometric imaging in schizophrenia. Curr Top Behav Neurosci 2010, 4:243-281.
  • [144]Knickmeyer RC, Wang J, Zhu H, Geng X, Woolson S, Hamer RM, Konneker T, Lin W, Styner M, Gilmore JH: Common variants in psychiatric risk genes predict brain structure at birth. Cereb CortexIn press
  • [145]Rapoport JL, Addington A, Frangou S: The neurodevelopmental model of schizophrenia: what can very early onset cases tell us? Curr Psychiatry Rep 2005, 7:81-82.
  • [146]Shaw P, Gogtay N, Rapoport J: Childhood psychiatric disorders as anomalies in neurodevelopmental trajectories. Hum Brain Mapp 2010, 31:917-925.
  • [147]Karbasforoushan H, Woodward ND: Resting-state networks In schizophrenia. Curr Top Med Chem 2012, 12:2404-2414.
  • [148]Whitfield-Gabrieli S, Ford JM: Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol 2012, 8:49-76.
  • [149]Crespi B, Stead P, Elliot M: Comparative genomics of autism and schizophrenia. Proc Natl Acad Sci USA 2010, 107:1736-1741.
  • [150]Matta JA, Ashby MC, Sanz-Clemente A, Roche KW, Isaac JT: mGluR5 and NMDA receptors drive the experience- and activity-dependent NMDA receptor NR2B to NR2A subunit switch. Neuron 2011, 70:339-351.
  • [151]Matosin N, Newell KA: Metabotropic glutamate receptor 5 in the pathology and treatment of schizophrenia. Neurosci Biobehav Rev 2012, 37:256-268.
  • [152]Rosenzweig I, Vukadinovic Z, Turner AJ, Catani M: Neuroconnectivity and valproic acid: the myelin hypothesis. Neurosci Biobehav Rev 2012, 36:1848-1856.
  • [153]Rolls ET, Deco G: A computational neuroscience approach to schizophrenia and its onset. Neurosci Biobehav Rev 2011, 35:1644-1653.
  • [154]Rubenstein JL: Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder. Curr Opin Neurol 2010, 23:118-123.
  • [155]Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E: The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 2012, 18:467-486.
  • [156]Li Q, Bian S, Hong J, Kawase-Koga Y, Zhu E, Zheng Y, Yang L, Sun T: Timing specific requirement of microRNA function is essential for embryonic and postnatal hippocampal development. PLoS One 2011, 6:e26000.
  • [157]Cohen S, Gabel HW, Hemberg M, Hutchinson AN, Sadacca LA, Ebert DH, Harmin DA, Greenberg RS, Verdine VK, Zhou Z, Wetsel WC, West AE, Greenberg ME: Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron 2011, 72:72-85.
  • [158]Ehninger D, Li W, Fox K, Stryker MP, Silva AJ: Reversing neurodevelopmental disorders in adults. Neuron 2008, 60:950-960.
  文献评价指标  
  下载次数:42次 浏览次数:25次