期刊论文详细信息
BMC Medical Genetics
Association of single nucleotide polymorphism rs3792876 in SLC22A4 gene with autoimmune thyroid disease in a Chinese Han population
Weiping Teng1  Zhongyan Shan2  Hongmei Zhang2  Hong Wang2  Chenling Fan2  Weiwei Wang2  Jia Li2  Yushu Li2  Jinyuan Mao2  Xin Hou3 
[1]Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Key Laboratory of Endocrine Diseases, Shenyang, 110001, Liaoning Province, China
[2]Key Laboratory of Endocrine Diseases, Shenyang, Liaoning Province, China
[3]Department of Geriatric Endocrinology and Metabolism, The First Hospital of China medical University, Shenyang, China
Others  :  1226087
DOI  :  10.1186/s12881-015-0222-x
 received in 2014-12-28, accepted in 2015-08-20, published in 16
PDF
【 摘 要 】

Background

The autoimmune thyroid diseases (AITD), including Graves’ disease (GD) and Hashimoto’s thyroiditis (HT), are caused by interactions between susceptibility genes and environmental triggers. Single nucleotide polymorphisms (SNPs) of Solute carrier family 22, member 4 (SLC22A4) have been shown to be associated with several autoimmune diseases, including Crohn’s disease (CD) and rheumatoid arthritis (RA). The aim of this study is to investigate whether SNP rs3792876 in the SLC22A4 gene is associated with GD, HT and AITD in a Chinese Han population.

Methods

In this study, we collected specimens from 553 Chinese Han individuals of 92 AITD pedigrees in 10 cities in Liaoning province, China (80 GD pedigrees, 478 members; 12 HT pedigrees, 75 members). SNP rs3792876 was genotyped using the TaqMan allelic discrimination assay. Hardy-Weinberg Equilibrium tests were performed among founders of the pedigrees using Haploview software. Family-based association tests performed using FBAT software.

Results

No deviation from Hardy-Weinberg equilibrium was observed (p > 0.05). There were not significant association between the SLC22A4 gene polymorphism (rs3792876) and GD, HT and AITD was found.

Conclusions

These results suggest a lack of association between the SLC22A4 gene polymorphism rs3792876 and susceptibility to GD, HT and AITD in a Chinese Han population.

【 授权许可】

   
2015 Hou et al.

【 预 览 】
附件列表
Files Size Format View
20150923022106937.pdf 375KB PDF download
【 参考文献 】
  • [1]Caturegli P, Kimura H, Rocchi R, Rose NR. Autoimmune thyroid diseases. Curr Opin Rheumatol. 2007; 19(1):44-8.
  • [2]Ban Y. Genetic factors of autoimmune thyroid diseases in Japanese. Autoimmune Dis. 2012.
  • [3]Davies TF, Latif R, Yin X. New genetic insights from autoimmune thyroid disease. J Thyroid Res. 2012.
  • [4]Bech K, Lumholtz B, Nerup J, Thomsen M, Platz P, Ryder LP, Svejgaard A, Siersbaek-Nielsen K, Hansen JM, Larsen JH. HLA antigens in Graves’ disease. Acta Endocrinol (Copenh). 1977; 86(3):510-6.
  • [5]Hadj-Kacem H, Rebuffat S, Mnif-Féki M, Belguith-Maalej S, Ayadi H, Péraldi-Roux S. Autoimmune thyroid diseases: genetic susceptibility of thyroid-specific genes and thyroid autoantigens contributions. Int J Immunogenet. 2009; 36(2):85-96.
  • [6]Stathatos N, Daniels GH. Autoimmune thyroid disease. Curr Opin Rheumatol. 2012; 24(1):70-5.
  • [7]Du L, Yang J, Huang J, Ma Y, Wang H, Xiong T, Xiang Z, Zhang Y, Huang J. The associations between the polymorphisms in the CTLA-4 gene and the risk of Graves’ disease in the Chinese population. BMC Med Genet. 2013.
  • [8]Jin Y, Teng W, Ben S, Xiong X, Zhang J, Xu S, Shugart YY, Jin L, Chen J, Huang W. Genome-wide scan of Graves’ disease: evidence for linkage on chromosome 5q31 in Chinese Han pedigrees. J Clin Endocrinol Metab. 2003; 88:1798-803.
  • [9]Sakai K, Shirasawa S, Ishikawa N, Ito K, Tamai H, Kuma K, Akamizu T, Tanimura M, Furugaki K, Yamamoto K, Sasazuki T. Identification of susceptibility loci for autoimmune thyroid disease to 5q31-q33 and Hashimoto’s thyroiditis to8q23-q24 by multipoint affected sib-pair linkage analysis in Japanese. Hum Mol Genet. 2001; 10:1379-86.
  • [10]Zhu W, Liu N, Zhao Y, Jia H, Cui B, Ning G. Association analysis of polymorphisms in IL-3, IL-4, IL-5, IL-9 and IL-13with Graves’ disease. J Endocrinol Invest. 2010.
  • [11]Sharma V, Michel S, Gaertner V, Franke A, Vogelberg C, von Berg A, Bufe A, Heinzmann A, Laub O, Rietschel E, Simma B, Frischer T, Genuneit J, Zeilinger S, Illig T, Schedel M, Potaczek DP, Kabesch M. Fine-mapping of IgE-associated loci 1q23, 5q31, and 12q13 using 1000 Genomes Project data. Allergy. 2014.
  • [12]Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y, Sawada T, Suzuki M, Nagasaki M, Ohtsuki M, Ono M, Furukawa H, Nagashima M, Yoshino S, Mabuchi A, Sekine A, Saito S, Takahashi A, Tsunoda T, Nakamura Y, Yamamoto K. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet. 2003; 35:341-8.
  • [13]Santiago JL, Martínez A, de la Calle H, Fernández-Arquero M, Figueredo MA, de la Concha EG, Urcelay E. Evidence for the association of the SLC22A4 and SLC22A5 genes with Type 1 Diabetes: a case control study. BMC Medical Genetics. 2006.
  • [14]Peltekova VD, Wintle RF, Rubin LA, Amos CI, Huang Q, Gu X, Newman B, Van Oene M, Cescon D, Greenberg G, Griffiths AM, StGeorge-Hyslop PH, Siminovitch KA. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet. 2004; 36:471-5.
  • [15]Helms C, Cao L, Krueger JG, Wijsman EM, Chamian F, Gordon D, Heffernan M, Daw JA, Robarge J, Ott J, Kwok PY, Menter A, Bowcock AM. A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis. Nat Genet. 2003; 35:349-56.
  • [16]Prokunina L, Castillejo-López C, Oberg F, Gunnarsson I, Berg L, Magnusson V, Brookes AJ, Tentler D, Kristjansdóttir H, Gröndal G, Bolstad AI, Svenungsson E, Lundberg I, Sturfelt G, Jönssen A, Truedsson L, Lima G, Alcocer-Varela J, Jonsson R, Gyllensten UB, Harley JB, Alarcón-Segovia D, Steinsson K, Alarcón-Riquelme ME. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet. 2002; 32:666-9.
  • [17]Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005; 21(2):263-5.
  • [18]Rabinowitz D, Laird N. A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Human Hered. 2000; 50:211-23.
  • [19]Yu Y, Sun LL, Jin Y, Li YS, Shan ZY, Huang W, Teng WP. Association study between the IL4, IL13, IRF1 and UGRP1 genes in chromosomal 5q31 region and Chinese Graves’ disease. J Hum Genet. 2005; 50:574-82.
  • [20]Takata Y, Inoue H, Sato A, Tsugawa K, Miyatake K, Hamada D, Shinomiya F, Nakano S, Yasui N, Tanahashi T, Itakura M. Replication of reported genetic associations of PADI4, FCRL3, SLC22A4 and RUNX1 genes with rheumatoid arthritis: results of an independent Japanese population and evidence from meta-analysis of East Asian studies. J Hum Genet. 2008; 53(2):163-73.
  • [21]Okada Y, Mori M, Yamada R, Suzuki A, Kobayashi K, Kubo M, Nakamura Y, Yamamoto K. SLC22A4 polymorphism and rheumatoid arthritis susceptibility: a replication study in a Japanese population and a meta analysis. J Rheumatol. 2008; 35(9):1723-8.
  • [22]Barton A, Eyre S, Bowes J, Ho P, John S, Worthington J. Investigation of the SLC22A4 Gene (Associated With Rheumatoid Arthritis in a Japanese Population) in a United Kingdom Population of Rheumatoid Arthritis Patients. Arthritis Rheum. 2005; 52:752-8.
  • [23]Martínez A, Valdivia A, Pascual-Salcedo D, Balsa A, Fernández-Gutiérrez B, De la Concha E, Urcelay E. Role of SLC22A4, SLC22A5, and RUNX1 genes in rheumatoid arthritis. J Rheumatol. 2006; 33(5):842-6.
  • [24]de Ridder L, Weersma RK, Dijkstra G, van der Steege G, Benninga MA, Nolte IM, Taminiau JA, Hommes DW, Stokkers PC. Genetic susceptibility has a more important role in pediatric-onset Crohn’s disease than in adult-onset Crohn’s disease. Inflamm Bowel Dis. 2006; 13(9):1083-92.
  文献评价指标  
  下载次数:4次 浏览次数:0次