期刊论文详细信息
BMC Genomics
The nuclear receptor gene family in the Pacific oyster, Crassostrea gigas, contains a novel subfamily group
Tim P Bean2  Brett P Lyons2  Tamara S Galloway1  Susanne Vogeler2 
[1] School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK;Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth DT4 8UB, UK
关键词: Transcription factor;    Xenobiotics;    Bivalve;    Hormone receptor;    Mollusc;   
Others  :  1217232
DOI  :  10.1186/1471-2164-15-369
 received in 2013-09-30, accepted in 2014-04-30,  发布年份 2014
PDF
【 摘 要 】

Background

Nuclear receptors are a superfamily of transcription factors important in key biological, developmental and reproductive processes. Several of these receptors are ligand- activated and through their ability to bind endogenous and exogenous ligands, are potentially vulnerable to xenobiotics. Molluscs are key ecological species in defining aquatic and terrestrial habitats and are sensitive to xenobiotic compounds in the environment. However, the understanding of nuclear receptor presence, function and xenobiotic disruption in the phylum Mollusca is limited.

Results

Here, forty-three nuclear receptor sequences were mined from the genome of the Pacific oyster, Crassostrea gigas. They include members of NR0-NR5 subfamilies, notably lacking any NR6 members. Phylogenetic analyses of the oyster nuclear receptors have been conducted showing the presence of a large novel subfamily group not previously reported, which is named NR1P. Homologues to all previous identified nuclear receptors in other mollusc species have also been determined including the putative heterodimer partner retinoid X receptor, estrogen receptor and estrogen related receptor.

Conclusion

C. gigas contains a highly diverse set of nuclear receptors including a novel NR1 group, which provides important information on presence and evolution of this transcription factor superfamily in invertebrates. The Pacific oyster possesses two members of NR3, the sex steroid hormone receptor analogues, of which there are 9 in humans. This provides increasing evidence that steroid ligand specific expansion of this family is deuterostome specific. This new knowledge on divergence and emergence of nuclear receptors in C. gigas provides essential information for studying regulation of molluscan gene expression and the potential effects of xenobiotics.

【 授权许可】

   
2014 Vogeler et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705161337450.pdf 1089KB PDF download
Figure 2. 141KB Image download
Figure 1. 38KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Germain P, Staels B, Dacquet C, Spedding M, Laudet V: Overview of nomenclature of nuclear receptors. Pharmacol Rev 2006, 58:685-704.
  • [2]Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Kastner P, Mark M, Chambon P, Evans RM: The nuclear receptor superfamily: the second decade. Cell 1995, 83:835-839.
  • [3]Mangelsdorf DJ, Evans RM: The RXR heterodimers and orphans receptors. Cell 1995, 83:841-850.
  • [4]Larroux C, Fahey B, Liubicich D, Hinman VF, Gauthier M, Gongora M, Green K, Wörheide G, Leys SP, Degnan BM: Developmental expression of transcription factor genes in a demosponge: insight into the origin of metazoan multicellularity. Evol Dev 2006, 8:150-173.
  • [5]Baker ME: Trichoplax, the simplest known animal, contains an estrogen-related receptor but no estrogen receptor: implications for estrogen receptor evolution. Biochem Biophys Res Commun 2008, 375:623-627.
  • [6]Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schnutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS: The trichoplax genome and the nature of placozoans. Nature 2008, 454:955-960.
  • [7]Bridgham JT, Eick GN, Larroux C, Deshpande K, Harms MJ, Gauthier MEA, Ortlund EA, Degnan BM, Thornton JW: Protein evolution by molecular tinkering: diversification of the nuclear receptor superfamily from a ligand-dependent ancestor. PLoS Biol 2010, 8:e1000497.
  • [8]King-Jones K, Thummel CS: Nuclear receptors – a prospective from Drosophila. Genetics 2005, 6:311-323.
  • [9]Maglich JM, Slunder A, Guan X, Shi Y, McKee DD, Carrick K, Kamdar K, Willson TM, Moore JT: Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes. Genome Biol 2001, 2:research0029.1-research0029.7.
  • [10]Laudet V, Hänni C, Coll J, Catzeflis C, Stéhelin D: Evolution of the nuclear receptor gene family. EMBO J 1992, 11:1003-1013.
  • [11]Laudet V: Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J Mol Endocrinol 1997, 19:207-226.
  • [12]Bertrand S, Brunet FG, Escriva H, Parmentier G, Laudet V, Robinson-Rechavi M: Evolutionary genomics of nuclear receptors: from twenty-five ancestral genes to derived endocrine systems. Mol Biol Evol 2004, 21:1923-1937.
  • [13]Nuclear Receptors Nomenclature Committee: A unified nomenclature system for the nuclear receptor superfamily. Cell 1999, 97:161-163.
  • [14]Wu W, Niles EG, El-Sayed N, Berriman M, LoVerde PT: Schistosoma mansoni (Platyhelminthes, Trematoda) nuclear receptor: Sixteen new members and a novel subfamily. Gene 2006, 366:303-315.
  • [15]Wu W, Niles EG, Hirai H, LoVerde PT: Evolution of a novel subfamily of nuclear receptors with members that each contain two DNA binding domains. BMC Evol Biol 2007, 7:27. BioMed Central Full Text
  • [16]Parkhaev PY: The Early Cambrian Radiation of Mollusca. In Phylogeny and Evolution of the Mollusca. Edited by Ponder WF, Lindberg DR. Berkeley: University of California Press; 2008:33-69.
  • [17]Davies IM, Vethaak D: Integrated marine environmental monitoring of chemicals and their effects. ICES Cooperative Research Report 2012, 315:1-277.
  • [18]Matthiessen P: An assessment of endocrine disruption in mollusks and the potential for developing internationally standardized mollusc life cycle test guidelines. Integr Environ Assess Manag 2008, 4:274-84.
  • [19]Thornton JW, Need E, Crews D: Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science 2003, 301:1714-1717.
  • [20]Bannister R, Beresford N, May D, Routledge EJ, Jobling S, Rand-Weaver M: Novel estrogen receptor-related transcripts in Marisa cornuarietis; a freshwater snail with reported sensitivity to estrogenic chemicals. Environ Sci Technol 2007, 41:2643-2650.
  • [21]Carter CJ, Spencer GE: Cloning of a Retinoic Acid Receptor (RAR) from the CNS of a Non-Chordate, Invertebrate Protostome And Its Role In Embryonic Development [Abstract]. In Program 225.11, 2009 Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience; 2009:152-157.
  • [22]Raingeard D, Bilbao E, Cancio I, Cajaraville MP: Retinoid X receptor (RXR), estrogen receptor (ER) and other nuclear receptors in tissues of the mussel Mytilus galloprovincialis: cloning and transcription pattern. Comp Biochem Physiol A Mol Integr Physiol 2013, 165:178-190.
  • [23]Omiecinski CJ, Vanden Heuvel JP, Perdew GH, Peters JM: Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci 2011, 120:49-75.
  • [24]Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC: Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev 2009, 30:293-342.
  • [25]Bergman A, Heindel JJ, Jobling S, Kidd KA, Zoeller TR: State of the Science of Endocrine Disrupting Chemicals – 2012. Geneva: United Nations Environment Programme and the World Health Organization; 2013.
  • [26]Fioroni P, Oehlmann J, Stroben E: The pseudohermaphroditism of prosobranchs: morphological aspects. Zool Anz 1991, 226:1-26.
  • [27]Horiguchi T, Shiraishi H, Shimizu M, Morita M: Imposex in sea snails, caused by organotin (tributyltin and triphenyltin) pollution in Japan: a survey. Appl Organomet Chem 1997, 11:451-455.
  • [28]Shi HH, Huang CJ, Zhu SX, Yu XJ, Xie WY: Generalized system of imposex and reproductive failure in female gastropods of coastal waters of mainland China. Mar Ecol Progr Ser 2005, 304:179-189.
  • [29]Sternberg RM, Gooding MP, Hotchkiss AK, LeBlanc GA: Environmental-endocrine control of reproductive maturation in gastropods: implications for the mechanism of tributyltin-induced imposex in prosobranchs. Ecotoxicol 2010, 19:4-23.
  • [30]Thain JE: Toxicity of TBT to Bivalves: Effects on Reproduction Growth and Survival. In Proceedings of the Oceans ′86 Organotin Symposium, Vol. 4: 23-25 Sept. 1986. Washington D.C: The Institute of Electrical and Electronics Engineers and Marine Technology Society, New York; 1986:1306-1313.
  • [31]Widdows J, Page DS: Effects of tributyltin and dibutyltin on the physiological energetics of the mussel, Mytilus edulis. Mar Environ Res 1993, 35:233-249.
  • [32]Salazar MH, Salazar SM: Mussel as Bioindicators: Effects of TBT on Survival, Bioaccumulation, and Growth Under Natural Conditions. In Organotin: Environmental Fate and Effects. Edited by Champ MA, Seligman PF. London: Chapman and Hall; 1996:305-330.
  • [33]Waldock MJ, Thain JE: Shell thickening in Crassostrea gigas: organotin antifouling or sediment induced? Mar Pollut Bull 1983, 14:411-415.
  • [34]Chagot D, Alzieu C, Sanjuan J, Grizel H: Sublethal and histopathological effects of trace levels of tributyltin fluoride on adult oysters Crassostrea gigas. Aquat Living Resour 1990, 3:121-130.
  • [35]Higuera-Ruiz R, Elorza J: Biometric, microstructural, and high-resolution trace element studies in Crassostrea gigas of Cantabria (Bay of Biscay, Spain): Anthropogenic and seasonal influences. Est Coast Shelf Sci 2009, 82:201-213.
  • [36]Higuera-Ruiz R, Elorza J: Shell thickening and chambering in the oyster Crassostrea gigas: natural and anthropogenic influence of tributyltin contamination. Environ Technol 2011, 32:583-591.
  • [37]Nishikawa J, Mamiya S, Kanayama T, Nishikawa T, Shiraishi F, Horiguchi T: Involvement of the retinoid X receptor in the development of imposex caused by organotins in gastropods. Environ Sci Technol 2004, 38:6271-6276.
  • [38]Nishikawa J: Imposex in marine gastropods may be caused by binding of organotins to retinoid X receptor. Mar Biol 2006, 149:117-124.
  • [39]Castro LF, Lima D, Machado A, Melo C, Hiromori Y, Nishikawa J, Nakanishi T, Reis-Henriques MA, Santos MM: Imposex induction is mediated through the Retinoid X Receptor signalling pathway in the neogastropod Nucella lapillus. Aquat Toxicol 2007, 85:57-66.
  • [40]Horiguchi T, Nishikawa T, Yasuhiko O, Shiraishi H, Morita M: Retinoid X receptor gene expression and protein content in tissues of the rock shell Thais clavigera. Aquat Toxicol 2007, 84:379-388.
  • [41]Horiguchi T, Ohta Y, Nishikawa T, Shiraishi F, Shiraishi H, Morita M: Exposure to 9-cis retinoic acid induces penis and vas deferens development in the female rock shell, Thais clavigera. Cell Biol Toxicol 2008, 24:553-562.
  • [42]Horiguchi T, Nishikawa T, Ohta Y, Shiraishi H, Morita M: Time course of expression of the retinoid X receptor gene and induction of imposex in the rock shell, Thais clavigera, exposed to triphenyltin chloride. Anal Bioanal Chem 2010, 396:597-607.
  • [43]Horiguchi T, Urushitani H, Ohta Y, Iguchi T, Shiraishi H: Establishment of a polyclonal antibody against the retinoid X receptor of the rock shell Thais clavigera and its application to rock shell tissues for imposex research. Ecotoxicology 2010, 19:571-576.
  • [44]Sternberg RM, Hotchkiss AK, Leblanc GA: Synchronized expression of Retinoid X Receptor mRNA with reproductive tract recrudescence in an imposex-susceptible mollusc. Environ Sci Technol 2008, 42:1345-1351.
  • [45]Lima D, Reis-Henriques MA, Silva R, Santos AI, Castro LF, Santos MM: Tributyltin-induced imposex in marine gastropods involves tissue-specific modulation of the retinoid X receptor. Aquat Toxicol 2011, 101:221-227.
  • [46]Urushitani H, Katsu Y, Ohta Y, Shiraishi H, Iguchi T, Horiguchi T: Cloning and characterization of retinoid X receptor (RXR) isoforms in the rock shell, Thais clavigera. Aquat Toxicol 2011, 103:101-111.
  • [47]Pascoal S, Carvalho G, Vasieva O, Hughes R, Cossins A, Fang Y, Ashelford K, Olohan L, Barroso C, Mendo S, Creer S: Transcriptomics and in vivo tests reveal novel mechanisms underlying endocrine disruption in an ecological sentinel, Nucella lapillus. Mol Ecol 2013, 22:1589-1608.
  • [48]Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PW, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, et al.: The oyster genome reveals stress adaptation and complexity of shell formation. Nature 2012, 490:49-54.
  • [49]Winnepenninckx BM, Reid DG, Backeljau T: Performance of 18S rRNA in littorinid phylogeny (Gastropoda: Caenogastropoda). J Mol Evol 1998, 47:586-596.
  • [50]Thomson SA, Baldwin WS, Wang YH, Kwon G, LeBlanc G: Annotation, phylogenetics, and expression of the nuclear receptors in Daphnia pulex. BMC Genomics 2009, 10:500. BioMed Central Full Text
  • [51]Forman BM, Chen J, Blumberg B, Kliewer SA, Henshaw R, Ong ES, Evans RM: Cross-Talk among RORα1 and the Rev-erb family of orphan nuclear receptors. Mol Endocrinol 1994, 8:1253-1261.
  • [52]Yen PM: Physiological and molecular basis of thyroid hormone activation. Physiol Rev 2001, 81:1097-1142.
  • [53]Allenby G, Janocha R, Kazmer S, Speck J, Grippo JF, Levin AA: Binding of 9-cis-retinoic acid and all-trans-retinoic acid to retinoic acid receptors alpha, beta, and gamma. Retinoic acid receptor gamma binds all-trans-retinoic acid preferentially over 9-cisretinoic acid. J Biol Chem 1994, 269:16689-16695.
  • [54]Creton R, Zwaan G, Dohmen R: Specific developmental defects in molluscs after treatment with retinoic acid during gastrulation. Dev Growth Differ 1993, 35:357-364.
  • [55]Marlétaz F, Holland LZ, Laudet V, Schubert M: Retinoic acid signaling and the evolution of chordates. Int J Biol Sci 2006, 2:38-47.
  • [56]Grün F, Watanabe H, Zamanian Z, Maeda L, Arima K, Cubacha R, Gardiner DM, Kanno J, Iguchi T, Blumberg B: Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol Endocrinol 2006, 20:2151-2155.
  • [57]Singh MP, Pathak D, Sharma GK, Sharma CS: Peroxisome proliferator-activated receptors (PPARs): a target with a broad therapeutic potential for human disease: an overview. Pharmacol Online 2011, 2:58-89.
  • [58]Dubrovskaya VA, Berger EM, Dubrovsky EB: Juvenile hormone regulation of the E75 nuclear receptor is conserved in Diptera and Lepidoptera. Gene 2004, 340:171-177.
  • [59]Ramakrishnan SN, Muscat GEO: The orphan Rev-erb nuclear receptors: a link between metabolism, circadian rhythm and inflammation? Nucl Recept Signal 2006, 4:e009.
  • [60]Stone BL, Thummel CS: The Drosophila 78C early late puff contains E78 and ecdysone-inducible gene that encodes a novel member of the nuclear hormone receptor superfamily. Cell 1993, 75:307-320.
  • [61]Lam G, Hall BL, Bender M, Thummel CS: DHR3 is required for the prepupal–pupal transition and differentiation of adult structures during Drosophila metamorphosis. Dev Biol 1999, 212:204-216.
  • [62]Dubrovsky EB, Dubrovskaya VA, Bernardo T, Otte V, DiFilippo R, Bryan H: The Drosophila FTZ-F1 nuclear receptor mediates juvenile hormone activation of E75A gene expression through an intracellular pathway. J Biol Chem 2011, 286:33689-33700.
  • [63]Jetten AM: Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal 2009, 7:e003.
  • [64]Kato Y, Koboyashi K, Oda S, Tatarazako N, Watanabe H, Iguchi T: Cloning and characterization of the ecdysone receptor and ultraspiracle protein from the water flea Daphnia magna. J Endocrinol 2007, 193:183-194.
  • [65]Laguerre M, Veenstra JA: Ecdysone receptor homologs from mollusks, leeches and a polychaete worm. FEBS Lett 2010, 584:4458-4462.
  • [66]Retnakaran A, Krell P, Feng Q, Arif B: Ecdysone agonists: mechanism and importance in controlling insect pests of agriculture and forestry. Arch Insect Biochem Physiol 2003, 54:187-199.
  • [67]Kalaany NY, Mangelsdorf DJ: LXRs and FXR: the Yin and Yang of cholesterol and fat metabolism. Annu Rev Physiol 2006, 68:159-191.
  • [68]Antebi A, Yeh WH, Tait D, Hedgecock EM, Riddle DL: daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev 2000, 14:1512-1527.
  • [69]King-Jones K, Horner MA, Lam G, Thummel CS: The DHR96 nuclear receptor regulates xenobiotic responses in Drosophila. Cell Metab 2006, 4:37-48.
  • [70]Horner MA, Pardee K, Liu S, King-Jones K, Lajoie G, Edwards A, Krause HM, Thummel CS: The Drosophila DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis. Genes Dev 2009, 23:2711-2716.
  • [71]Lindblom TH, Pierce GJ, Sluder AE: A C. elegans orphan nuclear receptor contributes to xenobiotic resistance. Curr Biol 2001, 5:864-868.
  • [72]Reschly EJ, Krasowski MD: Evolution and function of the NR1I nuclear hormone receptor subfamily (VDR, PXR, and CAR) with respect to metabolism of xenobiotics and endogenous compounds. Curr Drug Metab 2006, 7:349-365.
  • [73]Grasso LC, Hayward DC, Trueman JWH, Hardie KM, Janssens PA, Ball EE: The evolution of nuclear receptors: evidence from the coral Acropora. Mol Phylogenet Evol 2001, 21:93-102.
  • [74]Zhong W, Sladek FM, Darnell JE Jr: The expression pattern of a Drosophila homolog to the mouse transcription factor HNF-4 suggests a determinative role in gut formation. EMBO J 1993, 12:537-544.
  • [75]Palanker L, Tennessen JM, Lam G, Thummel CS: Drosophila HNF4 regulates lipid mobilization and beta-oxidation. Cell Metab 2009, 9:228-239.
  • [76]Love-Gregory L, Permutt MA: HNF4A genetic variants: role in diabetes. Curr Opin Clin Nutr Metab Care 2007, 10:397-402.
  • [77]Chellappa K, Jankova L, Schnabl JM, Pan S, Brelivet Y, Fung CLS, Chan C, Dent OF, Clarke SJ, Robertson GR, Sladek FM: Src tyrosine kinase phosphorylation of nuclear receptor HNF4α correlates with isoform-specific loss of HNF4α in human colon cancer. Proc Natl Acad Sci U S A 2012, 109:2302-2307.
  • [78]Bouton D, Escriva H, de Mendoconça RL, Glineur C, Bertin B, Noël C, Robinson-Rechavi M, de Groot A, Cornette J, Laudet V, Pierce RJ: A conserved retinoid X receptor (RXR) from the mollusk Biomphalaria glabrata transactivates transcription in the presence of retinoids. J Mol Endocinol 2005, 34:567-582.
  • [79]Dawson MI, Xia Z: The retinoid X receptors and their ligands. Biochim Biophys Acta 1821, 2012:21-56.
  • [80]Carter CJ, Farrar N, Carlone RI, Spencer GE: Developmental expression of a molluscan RXR and evidence for its novel, nongenomic role in growth cone guidance. Dev Biol 2010, 343:124-137.
  • [81]Cui S, Kolodziej KE, Obara N, Amaral-Psarris A, Demmers J, Shi L, Engel JD, Grosveld F, Strouboulis J, Tanabe O: Nuclear receptors TR2 and TR4 recruits multiple epigenetic transcriptional corepressors that associate specifically with the embryonic β-type globin promoters in differentiated adult erythroid cells. Mol Cell Biol 2011, 31:3298-3311.
  • [82]Zelhof AC, Yao TP, Evans RM, McKeown M: Identification and characterization of a Drosophila nuclear receptor with the ability to inhibit the ecdysone response. Proc Natl Acad Sci 1995, 92:10477-10481.
  • [83]Gissendanner CR, Crossgrove K, Kraus KA, Maina CV, Sluder AE: Expression and function of conserved nuclear receptor genes in C. elegans. Dev Biol 2004, 266:399-416.
  • [84]Abrahams BS, Kwok MC, Trinh E, Budaghzadeh S, Hossain SM, Simpson EM: Pathological aggression in “Fierce” mice corrected by human nuclear receptor 2E1. J Neorosci 2005, 25:6263-6270.
  • [85]Sun G, Yu RT, Evans RM, Shi Y: Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl Acad Sci 2007, 104:15282-15287.
  • [86]Haider NB, Jacobson SG, Cideciyan AV, Swiderski R, Streb LM, Searby C, Beck G, Hockey R, Hanna DB, Gorman S, Duhl D, Carmi R, Bennett J, Weleber RG, Fishman GA, Wright AF, Stone EM, Sheffield VC: Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nat Genet 2000, 24:127-131.
  • [87]Milam AH, Rose L, Cideciyan AV, Barakat MR, Tang WX, Gupta N, Aleman TS, Wright AF, Stone EM, Sheffield VC, Jacobson SG: The nuclear receptor NR2E3 plays a role in human retinal photoreceptor differentiation and degeneration. Proc Natl Acad Sci 2002, 99:473-478.
  • [88]Much JW, Slade DJ, Klampert K, Garriga G, Wightman B: The fax-1 nuclear hormone receptor regulates axon pathfinding and neurotransmitter expression. Development 2000, 127:703-712.
  • [89]Mlodzik M, Hiromi Y, Weber U, Goodman CS, Rubin GM: The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell 1990, 60:211-224.
  • [90]Broadus J, Doe CQ: Evolution of neuroblast identity: seven-up and prospero expression reveal homologous and divergent neuroblast fates in Drosophila and Schistocerca. Development 1995, 121:3989-3996.
  • [91]Qiu Y, Pereira FA, DeMayo FJ, Lydon JP, Tsai SY, Tsai MJ: Null mutation of COUP-TFI results in defects in morphogenesis of the glossopharyngeal ganglion, axonal projection, and arborization. Genes Dev 1997, 11:1925-1937.
  • [92]Zhou C, Tsai SY, Tsai MJ: COUP-TFI: an intrinsic factor for early regionalization of the neocortex. Genes Dev 2001, 15:2054-2059.
  • [93]Matsumoto T, Nakamura AM, Mori K, Akiyama I, Hirose H, Takahashi Y: Oyster estrogen receptor: cDNA cloning and immunolocalization. Gen Comp Endocrinol 2007, 151:195-201.
  • [94]Bannister R, Beresford N, Granger DW, Pounds NA, Rand-Weaver M, White R, Jobling S, Routledge EJ: No substantial changes in estrogen receptor and estrogen-related receptor orthologues gene transcription in Marisa cornuarietis exposed to estrogenic chemicals. Aquat Toxicol 2013, 140–141:19-26.
  • [95]Sáez PJ, Lange S, Pérez-Acle T, Owen GI: Nuclear Receptor Genes: Evolution. In eLS. Chichester: John Wiley & Sons Ltd; 2010. doi:10.1002/9780470015902.a0006145.pub3
  • [96]Markov GV, Laudet V: Origin and evolution of the ligand-binding ability of nuclear receptors. Mol Cell Endocrinol 2011, 334:21-30.
  • [97]Eick GN, Thornton JW: Evolution of steroid receptors from an estrogen-sensitive ancestral receptor. Mol Cell Endocrinol 2011, 334:31-38.
  • [98]Bertrand S, Belgacem MR, Escriva H: Nuclear hormone receptors in chordates. Mol Cell Endocrinol 2011, 334:67-75.
  • [99]Zhao Y, Bruemmer D: NR4A orphan nuclear receptors: transcriptional regulators of gene expression in metabolism and vascular Biology. Arterioscler Thromb Vasc Biol 2010, 30:1535-1541.
  • [100]Mohan HM, Aherne CM, Rogers AC, Baird AW, Winter DC, Murphy EP: Molecular pathways: the role of NR4A orphan nuclear receptors in cancer. Clin Cancer Res 2012, 18:3223-3228.
  • [101]Baker KD, Shewchuk LM, Kozlova T, Makishima M, Hassell A, Wisely B, Caravella JA, Lambert MH, Reinking JL, Krause H, Thummel CS, Willson TM, Mangelsdorf DJ: The Drosophila orphan nuclear receptor DHR38 mediates an atypical ecdysteroid signaling pathway. Cell 2003, 113:731-742.
  • [102]Codina A, Benoit G, Gooch JT, Neuhaus D, Perlmann T, Schwabe JW: Identification of a novel co-regulator interaction surface on the ligand binding domain of Nurr1 using NMR footprinting. J Biol Chem 2004, 279:53338-53345.
  • [103]Flaig R, Greschik H, Peluso-Iltis C, Moras D: Structural basis for the cell-specific activities of the NGFIB and the Nurr1 ligand-binding domain. J Biol Chem 2005, 280:19250-19258.
  • [104]Wu W, LoVerde PT: Schistosoma mansoni: Identification of SmNR4A, a member of nuclear receptor subfamily 4. Exp Parasitol 2008, 120:208-213.
  • [105]Ueda H, Sun GC, Murata T, Hirose S: A novel DNA-binding motif abuts the zinc finger domain of insect nuclear hormone receptor FTZ-F1 and mouse embryonal long terminal repeat-binding protein. Mol Cell Biol 1992, 12:5667-5672.
  • [106]Sullivan AA, Thummel CS: Temporal profiles of nuclear receptor gene expression reveal coordinate transcriptional responses during Drosophila development. Mol Endocrinol 2003, 17:2125-2137.
  • [107]Fayard E, Auwerx J, Schoonjans K: LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol 2004, 14:250-260.
  • [108]Hoivik EA, Lewis AE, Aumo L, Bakke M: Molecular aspects of steroidogenic factor 1 (SF-1). Mol Cell Endocrinol 2010, 315:27-39.
  • [109]Allen AK, Spradling AC: The Sf1-related nuclear hormone receptor Hr39 regulates Drosophila female reproductive tract development and function. Development 2008, 135:311-321.
  • [110]De Mendonça RL, Bouton D, Bertin B, Escriva H, Noël C, Vanacker JM, Cornette J, Laudet V, Pierce RJ: A functionally conserved member of the FTZ-F1 nuclear receptor family from Schistosoma mansoni. Eur J Biochem 2002, 269:5700-5711.
  • [111]Ohno CK, Ueda H, Petkovich M: The Drosophila nuclear receptors FTZ-F1 alpha and FTZ-F1 beta compete as monomers for binding to a site in the fushi tarazu gene. Mol Cell Biol 1994, 14:3166-3175.
  • [112]Ehrlund A, Treuter E: Ligand-independent actions of the orphan receptors/corepressors DAX-1 and SHP in metabolism, reproduction and disease. J Steroid Biochem Mol Biol 2012, 130:169-179.
  • [113]Iyer AK, McCabe ER: Molecular mechanisms of DAX1 action. Mol Genet Metab 2004, 83:60-73.
  • [114]Kanayama T, Kobayashi N, Mamiya S, Nakanishi T, Nishikawa J: Organotin compounds promote adipocyte differentiation as agonists of the peroxisome proliferator-activated receptor gamma/retinoid X receptor pathway. Mol Pharmacol 2005, 67:766-774.
  • [115]le Maire A, Grimaldi M, Roecklin D, Dagnio S, Vivat-Hannah V, Balaquer P, Bourguet W: Activation of RXR-PPAR heterodimers by organotin environmental endocrine disruptors. EMBO Rep 2009, 10:367-373.
  • [116]Zorita I, Apraiz I, Ortiz-Zarragoitia M, Orbea A, Cancio I, Soto M, Marigómez I, Cajaraville MP: Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using mussels as sentinel organisms. Environ Pollut 2007, 148:236-250.
  • [117]Cancio I, Orbea A, Völkl A, Fahimi HD, Cajaraville MP: Induction of peroxisomal oxidases in mussels: comparison of effects of lubricant oil and benzo(a)pyrene with two typical peroxisome proliferators on peroxisome structure and function in Mytilus galloprovincialis. Toxicol Appl Pharmacol 1998, 149:64-72.
  • [118]Orbea A, Cajaraville MP: Peroxisome proliferation and antioxidant enzymes in transplanted mussels of four basque estuaries with different levels of polycyclic aromatic hydrocarbon and polychlorinated biphenyl pollution. Environ Toxicol Chem 2006, 25:1616-1626.
  • [119]Cajaraville MP, Ortiz-Zarragoitia M: Specificity of the peroxisome proliferation response in mussel exposed to environmental pollutants. Aquat Toxicol 2006, 78S:S117-S123.
  • [120]Latruffe N, Vamecq J, Cherkaoui Malki M: Genetic-dependency of peroxisomal cell functions – emerging aspects. J Cell Mol Med 2003, 7:238-248.
  • [121]Rakhshandehroo M, Knoch B, Müller M, Kersten S: Peroxisome proliferator-activated receptor alpha target genes. PPAR Res 2010, 2010:612089.
  • [122]Kim JH, Yamaguchi K, Lee SH, Tithof PK, Sayler GS, Yoon JH, Baek SJ: Evaluation of polycyclic aromatic hydrocarbons in the activation of early growth response-1 and peroxisome proliferator activated receptors. Toxicol Sci 2005, 85:585-593.
  • [123]Desvergne B, Feige JN, Casals-Casas C: PPAR-mediated activity of phthalates: a link to the obesity epidemic? Mol Cell Endocrinol 2009, 304:43-48.
  • [124]Kwintkiewicz J, Nishi Y, Yanase T, Giudice LC: Peroxisome proliferator-activated receptor-gamma mediates bisphenol A inhibition of FSH-stimulated IGF-1, aromatase, and estradiol in human granulosa cells. Environ Health Perspect 2010, 118:400-406.
  • [125]Scott AP: Do mollusks use vertebrate sex steroids as reproductive hormones? II. Critical review of the evidence that steroids have biological effects. Steroids 2013, 78:268-281.
  • [126]Matsumoto T, Osada M, Osawa Y, Mori K: Gonadal estrogen profile and immunohistochemical localization of steroidogenic enzymes in the oyster and scallop during sexual maturation. Comp Biochem Physiol B 1997, 118:811-817.
  • [127]Köhler HR, Kloas W, Schirling M, Lutz I, Reye AL, Langen JS, Triebskorn R, Nagel R, Schönfelder G: Sex steroid receptor evolution and signalling in aquatic invertebrates. Ecotoxicology 2007, 16:131-143.
  • [128]Benstead RS, Baynes A, Casey D, Routledge EJ, Jobling S: 17β-Oestradiol may prolong reproduction in seasonally breeding freshwater gastropod molluscs. Aquat Toxicol 2011, 101:326-334.
  • [129]De Lisa E, Paolucci M, Di Cosmo A: Conservative nature of oestradiol signalling pathways in the brain lobes of octopus vulgaris involved in reproduction, learning and motor coordination. J Neuroendocrinol 2012, 24:275-284.
  • [130]Janer G, Porte C: Sex steroids and potential mechanisms of non-genomic endocrine disruption in invertebrates. Ecotoxicology 2007, 16:145-160.
  • [131]Lafont R, Mathieu M: Steroids in aquatic invertebrates. Ecotoxicology 2007, 16:109-130.
  • [132]Kajiwara M, Kuraku S, Kurokawa T, Kato K, Toda S, Hirose H, Takahashi S, Shibata Y, Iguchi T, Matsumoto T, Miyata T, Miura T, Takahashi Y: Tissue preferential expression of estrogen receptor gene in the marine snail, Thais clavigera. Gen Comp Endocrinol 2006, 148:315-326.
  • [133]Keay J, Bridgham JT, Thornton JW: The Octopus vulgaris estrogen receptor is a constitutive transcriptional activator: evolutionary and functional implications. Endocrinology 2006, 147:3861-3869.
  • [134]Baker ME, Chandsawangbhuwana C: Analysis of 3D models of octopus estrogen receptor with estradiol: evidence for steric clashes that prevent estrogen binding. Biochem Biophys Res Commun 2007, 361:782-788.
  • [135]Puinean AM, Labadie P, Hill EM, Osada M, Kishida M, Nakao R, Novillo A, Callard IP, Rotchell JM: Laboratory exposure to 17β-estradiol fails to induce vitellogenin and estrogen receptor gene expression in the marine invertebrate Mytilus edulis. Aquat Toxicol 2006, 79:376-383.
  • [136]Scott AP: Do mollusks use vertebrate sex steroids as reproductive hormones? Part I: Critical appraisal of the evidence for the presence, biosynthesis and uptake of steroids. Steroids 2012, 77:1450-1468.
  • [137]Karimullina E, Li Y, Ginjupalli GK, Baldwin WS: Daphnia HR96 is a promiscuous xenobiotic and endobiotic nuclear receptor. Aquat Toxicol 2012, 116–117:69-78.
  • [138]Kawamoto T, Kakizaki S, Yoshinari K, Negishi M: Estrogen activation of the nuclear orphan receptor CAR (constitutive active receptor) in induction of the mouse Cyp2b10 gene. Mol Endocrinol 2000, 14:1897-1905.
  • [139]Kretschmer XC, Baldwin WS: CAR and PXR: xenosensors of endocrine disrupters? Chem Biol Interact 2005, 155:111-128.
  • [140]Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslunder K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A: The Pfam protein families database. Nucleic Acids Res 2010, 38:D211-D222.
  • [141]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 2011, 39:D225-D229.
  • [142]Chomczynski P, Mackey K: Short technical reports. Modification of the TRI reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich source. Biotechniques 1995, 19:942-945.
  • [143]Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T: Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma 2012, 13:134. BioMed Central Full Text
  • [144]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [145]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59:307-321.
  • [146]Abascal F, Zardoya R, Posada D: ProtTest: Selection of best-fit models of protein evolution. Bioinformatics 2005, 21:2104-2105.
  • [147]Huelsenbeck JP, Ronquist F: MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 2001, 17:754-755.
  • [148]Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992, 8:275-282.
  • [149]Gouy M, Guindon S, Gascuel O: SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010, 27:221-224.
  • [150]Castro LF, Melo C, Guillot R, Mendes I, Queiros S, Lima D, Reis-Henriques MA, Santos MM: The estrogen receptor of the gastropod Nucella lapillus: modulation following exposure to an estrogenic effluent. Aquat Toxicol 2007, 84:465-468.
  • [151]Zhang H, Pan L, Zhang L: Molecular cloning and characterization of estrogen receptor gene in the Scallop Chlamys farreri: expression profiles in response to endocrine disrupting chemicals. Comp Biochem Physiol C Toxicol Pharmacol 2012, 156:51-57.
  • [152]Stange D, Sieratowicz A, Horres R, Oehlmann J: Freshwater mudsnail (Potamopyrgus antipodarum) estrogen receptor: identification and expression analysis under exposure to (xeno-)hormones. Ecotoxicol Environ Saf 2012, 75:94-101.
  • [153]Sternberg RM, Hotchkiss AK, LeBlanc GA: The contribution of steroidal androgens and estrogens to reproductive maturation of the eastern mud snail Ilyanassa obsoleta. Gen Comp Endocrinol 2008, 156:15-26.
  文献评价指标  
  下载次数:0次 浏览次数:14次