期刊论文详细信息
BMC Genetics
Long term persistence of clonal malaria parasite Plasmodium falciparum lineages in the Colombian Pacific region
Tim JC Anderson3  Claribel Murillo4  Sanjay Menon1  Lyda Osorio2  Shalini Nair3  Diego F Echeverry4 
[1] Virginia Commonwealth University, Richmond, VA, 23220, USA;Grupo de Epidemiología y Salud Poblacional, GESP, School of Public Health, Faculty of Health, Universidad del Valle, Calle 4B # 36-00, Cali, Colombia;Department of Genetics, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, Texas, USA;International Center for Medical Research and Training, CIDEIM, Carrera 125 # 19-225 Av. La María, Cali, Colombia
关键词: Association studies;    Linkage disequilibrium;    SNPs;    Population structure;    Genotypic richness;    Persistence;    Relatedness;    Clonality;    Colombia;    Plasmodium falciparum;   
Others  :  1089671
DOI  :  10.1186/1471-2156-14-2
 received in 2012-09-20, accepted in 2012-12-21,  发布年份 2013
PDF
【 摘 要 】

Background

Resistance to chloroquine and antifolate drugs has evolved independently in South America, suggesting that genotype - phenotype studies aimed at understanding the genetic basis of resistance to these and other drugs should be conducted in this continent. This research was conducted to better understand the population structure of Colombian Plasmodium falciparum in preparation for such studies.

Results

A set of 384 SNPs were genotyped in blood spot DNA samples from 447 P. falciparum infected subjects collected over a ten year period from four provinces of the Colombian Pacific coast to evaluate clonality, population structure and linkage disequilibrium (LD). Most infections (81%) contained a single predominant clone. These clustered into 136 multilocus genotypes (MLGs), with 32% of MLGs recovered from multiple (2 – 28) independent subjects. We observed extremely low genotypic richness (R = 0.42) and long persistence of MLGs through time (median = 537 days, range = 1 – 2,997 days). There was a high probability (>5%) of sampling parasites from the same MLG in different subjects within 28 days, suggesting caution is needed when using genotyping methods to assess treatment success in clinical drug trials. Panmixia was rejected as four well differentiated subpopulations (FST = 0.084 - 0.279) were identified. These occurred sympatrically but varied in frequency within the four provinces. Linkage disequilibrium (LD) decayed more rapidly (r2 = 0.17 for markers <10 kb apart) than observed previously in South American samples.

Conclusions

We conclude that Colombian populations have several advantages for association studies, because multiple clone infections are uncommon and LD decays over the scale of one or a few genes. However, the extensive population structure and low genotype richness will need to be accounted for when designing and analyzing association studies.

【 授权许可】

   
2013 Echeverry et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150127010752869.pdf 1260KB PDF download
Figure 6. 55KB Image download
Figure 5. 161KB Image download
Figure 4. 124KB Image download
Figure 3. 23KB Image download
Figure 2. 35KB Image download
Figure 1. 201KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Wootton J, Feng X, Ferdig M, Cooper R, Mu J, Baruch D, Magill A, Su X: Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 2002, 418(6895):320-323.
  • [2]Mita T, Tanabe K, Kita K: Spread and evolution of Plasmodium falciparum drug resistance. Parasitol Int 2009, 58(3):201-209.
  • [3]PAHO/WHO: Status of malaria in the Americas, 2004: A series of data tables. Washington, D.C, USA: PAHO/WHO; 2004.
  • [4]Instituto Nacional de Salud. Ministerio de la Protección Social: Protocolo de Malaria. Bogotá: Instituto Nacional de Salud; 2007.
  • [5]Osorio L, Todd J, Pearce R, Bradley D: The role of imported cases in the epidemiology of urban Plasmodium falciparum malaria in Quibdó, Colombia. Trop Med Int Health 2007, 12(3):331-341.
  • [6]Gómez D, Chaparro J, Rubiano C, Rojas MO, Wasserman M: Genetic diversity of Plasmodium falciparum field samples from an isolated Colombian village. AmJTrop Med Hyg 2002, 67(6):611-616.
  • [7]Montoya L, Maestre A, Carmona J, Lopes D, Do Rosario V, Blair S: Plasmodium falciparum: diversity studies of isolates from two Colombian regions with different endemicity. Exp Parasitol 2003, 104(1–2):14-19.
  • [8]Anderson T, Haubold B, Williams J, Estrada-Franco J, Richardson L, Mollinedo R, Bockarie M, Mokili J, Mharakurwa S, French N, et al.: Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol 2000, 17(10):1467-1482.
  • [9]Orjuela-Sánchez P, Da Silva-Nunes M, Da Silva NS, Scopel KK, Gonçalves RM, Malafronte RS, Ferreira MU: Population dynamics of genetically diverse Plasmodium falciparum lineages: community-based prospective study in rural Amazonia. Parasitology 2009, 136(10):1097-1105.
  • [10]Griffing SM, Mixson-Hayden T, Sridaran S, Alam MT, McCollum AM, Cabezas C, Marquiño Quezada W, Barnwell JW, De Oliveira AM, Lucas C, et al.: South American Plasmodium falciparum after the malaria eradication era: clonal population expansion and survival of the fittest hybrids. PLoS One 2011, 6(9):e23486.
  • [11]Machado RL, Povoa MM, Calvosa VS, Ferreira MU, Rossit AR, dos Santos EJ, Conway DJ: Genetic structure of Plasmodium falciparum populations in the Brazilian Amazon region. J Infect Dis 2004, 190(9):1547-1555.
  • [12]Departamento Administrativo Nacional de Estadistica DANE: Colombia Censo General 2005. Nivel Nacional. DANE, Bogota DC Colombia; 2005.
  • [13]Montoya-Lerma J, Solarte YA, Giraldo-Calderón GI, Quiñones ML, Ruiz-López F, Wilkerson RC, González R: Malaria vector species in Colombia: a review. Mem Inst Oswaldo Cruz 2011, 106(Suppl 1):223-238.
  • [14]González R, Carrejo N: Introducción al Estudio Taxonómico de Anopheles de Colombia Claves Taxonómicas y Notas de Distribución, Segunda Edición. Universidad del Valle Press, Cali - Colombia; 2009.
  • [15]Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS, et al.: PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res 2009, 37:D539-D543.
  • [16]Shen R, Fan J, Campbell D, Chang W, Chen J, Doucet D, Yeakley J, Bibikova M, Wickham Garcia E, McBride C, et al.: High-throughput SNP genotyping on universal bead arrays. Mutat Res 2005, 573(1–2):70-82.
  • [17]Anderson TJ, Nair S, Nkhoma S, Williams JT, Imwong M, Yi P, Socheat D, Das D, Chotivanich K, Day NP, et al.: High heritability of malaria parasite clearance rate indicates a genetic basis for artemisinin resistance in western Cambodia. J Infect Dis 2010, 201(9):1326-1330.
  • [18]Anderson TJ, Williams JT, Nair S, Sudimack D, Barends M, Jaidee A, Price RN, Nosten F: Inferred relatedness and heritability in malaria parasites. Proc Biol Sci 2010, 277(1693):2531-2540.
  • [19]Excoffier LGLSS: Arlequin ver 3.0. An integrated software package for population genetics data analysis. Evol Bioinform Online 2005, 1:47-50.
  • [20]Felsenstein J: PHYLIP (Phylogeny Inference Package) version 3.2. Cladistics 1989, 5:164-166.
  • [21]Rambaut A, Drummond A: Fig Tree V1.3.1. Institute of evolutionary, University of Edinburgh, Edinburgh, United Kingdom; 2010. [http://tree.bio.ed.ac.uk/software/figtree/ webcite]
  • [22]Dorken M, Eckert C: Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol 2001, 89(3):339-350.
  • [23]Arnaud-Haond S, Belkhir K: Genclone: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 2007, 7:15-17.
  • [24]Harada Y, Kawano S, Iwasa Y: Probability of clonal identity: inferring the relative success of sexual versus clonal reproduction from spatial genetic patterns. J Ecol 1997, 85:591-600.
  • [25]Pritchard J, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155(2):945-959.
  • [26]Falush D, Stephens M, Pritchard J: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 2003, 164(4):1567-1587.
  • [27]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005, 14(8):2611-2620.
  • [28]Barrett J, Fry B, Maller J, Daly M: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21(2):263-265.
  • [29]Van Tyne D, Park DJ, Schaffner SF, Neafsey DE, Angelino E, Cortese JF, Barnes KG, Rosen DM, Lukens AK, Daniels RF, et al.: Identification and functional validation of the novel antimalarial resistance locus PF10_0355 in Plasmodium falciparum. PLoS Genet 2011, 7(4):e1001383.
  • [30]Wang Y, Nair S, Nosten F, Anderson T: Multiple Displacement Amplification for Malaria Parasite DNA. J Parasitol 2009, 95(1):253-255.
  • [31]Nair S, Williams JT, Brockman A, Paiphun L, Mayxay M, Newton PN, Guthmann JP, Smithuis FM, Hien TT, White NJ, et al.: A selective sweep driven by pyrimethamine treatment in southeast asian malaria parasites. Mol Biol Evol 2003, 20(9):1526-1536.
  • [32]Haddad D, Snounou G, Mattei D, Enamorado IG, Figueroa J, Ståhl S, Berzins K: Limited genetic diversity of Plasmodium falciparum in field isolates from Honduras. Am J Trop Med Hyg 1999, 60(1):30-34.
  • [33]Babiker HA, Ranford-Cartwright LC, Walliker D: Genetic structure and dynamics of Plasmodium falciparum infections in the Kilombero region of Tanzania. Trans R Soc Trop Med Hyg 1999, 93(Suppl 1):11-14.
  • [34]Bonizzoni M, Afrane Y, Baliraine FN, Amenya DA, Githeko AK, Yan G: Genetic structure of Plasmodium falciparum populations between lowland and highland sites and antimalarial drug resistance in Western Kenya. Infect Genet Evol 2009, 9(5):806-812.
  • [35]Nkhoma SC, Nair S, Al-Saai S, Ashley E, McGready R, Phyo AP, Nosten F, Anderson TJ: Population genetic correlates of declining transmission in a human pathogen. Mol Ecol 2012.
  • [36]Iwagami M, Rivera P, Villacorte E, Escueta A, Hatabu T, Kawazu S, Hayakawa T, Tanabe K, Kano S: Genetic diversity and population structure of Plasmodium falciparum in the Philippines. Malar J 2009, 8:96. BioMed Central Full Text
  • [37]Pumpaibool T, Arnathau C, Durand P, Kanchanakhan N, Siripoon N, Suegorn A, Sitthi-Amorn C, Renaud F, Harnyuttanakorn P: Genetic diversity and population structure of Plasmodium falciparum in Thailand, a low transmission country. Malar J 2009, 8:155. BioMed Central Full Text
  • [38]Urdaneta L, Lal A, Barnabe C, Oury B, Goldman I, Ayala FJ, Tibayrenc M: Evidence for clonal propagation in natural isolates of Plasmodium falciparum from Venezuela. Proc Natl Acad Sci USA 2001, 98(12):6725-6729.
  • [39]Branch OH, Sutton PL, Barnes C, Castro JC, Hussin J, Awadalla P, Hijar G: Plasmodium falciparum genetic diversity maintained and amplified over 5 years of a low transmission endemic in the Peruvian Amazon. Mol Biol Evol 2011, 28(7):1973-1986.
  • [40]Sutton PL, Torres LP, Branch OH: Sexual recombination is a signature of a persisting malaria epidemic in Peru. Malar J 2011, 10(1):329. BioMed Central Full Text
  • [41]Collins WJ, Greenhouse B, Rosenthal PJ, Dorsey G: The use of genotyping in antimalarial clinical trials: a systematic review of published studies from 1995–2005. Malar J 2006, 5:122. BioMed Central Full Text
  • [42]Juliano JJ, Taylor SM, Meshnick SR: Polymerase chain reaction adjustment in antimalarial trials: molecular malarkey? J Infect Dis 2009, 200(1):5-7.
  • [43]Juliano JJ, Gadalla N, Sutherland CJ, Meshnick SR: The perils of PCR: can we accurately ’correct’ antimalarial trials? Trends Parasitol 2010, 26(3):119-124.
  • [44]Osorio L, Gonzalez I, Olliaro P, Taylor W: Artemisinin-based combination therapy for uncomplicated Plasmodium falciparum malaria in Colombia. Malar J 2007, 6:25. BioMed Central Full Text
  • [45]Alvarez G, Tobón A, Piñeros J, Ríos A, Blair S: Dynamics of Plasmodium falciparum Parasitemia Regarding Combined Treatment Regimens for Acute Uncomplicated Malaria, Antioquia, Colombia. Am J Trop Med Hyg 2010, 83(1):90-96.
  • [46]Vásquez A, Sanín F, Alvarez L, Tobón A, Ríos A, Blair S: Therapeutic efficacy of a regimen of artesunate-mefloquine-primaquine treatment for Plasmodium falciparum malaria and treatment effects on gametocytic development. Biomedica 2009, 29(2):307-319.
  • [47]Rojas-Alvarez DP: Evaluacion de la eficacia terapeutica y la tolerabilidad de las combinaciones fijas de Artesunato/Amodiaquina y Artemeter/Lumefantrina para el tratamiento de la malaria por Plasmodium falciparum no complicada en el departamento del Choco (Colombia). Universidad Nacional, Bogota; 2010.
  • [48]Juliano JJ, Ariey F, Sem R, Tangpukdee N, Krudsood S, Olson C, Looareesuwan S, Rogers WO, Wongsrichanalai C, Meshnick SR: Misclassification of drug failure in Plasmodium falciparum clinical trials in southeast Asia. J Infect Dis 2009, 200(4):624-628.
  • [49]Padilla JC, Alvarez G, Montoya R, Chaparro P, Herrera S: Epidemiology and control of malaria in Colombia. Mem Inst Oswaldo Cruz 2011, 106(Suppl 1):114-122.
  • [50]Corredor V, Murillo C, Echeverry DF, Benavides J, Pearce RJ, Roper C, Guerra AP, Osorio L: Origin and dissemination across the Colombian Andes mountain range of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum. Antimicrob Agents Chemother 2010, 54(8):3121-3125.
  • [51]Joy D, Gonzalez-Ceron L, Carlton J, Gueye A, Fay M, McCutchan T, Su X: Local adaptation and vector-mediated population structure in Plasmodium vivax malaria. Mol Biol Evol 2008, 25(6):1245-1252.
  • [52]Ariey F, Duchemin JB, Robert V: Metapopulation concepts applied to falciparum malaria and their impacts on the emergence and spread of chloroquine resistance. Infect Genet Evol 2003, 2(3):185-192.
  • [53]Dye C, Williams BG: Multigenic drug resistance among inbred malaria parasites. Proc Biol Sci 1997, 264(1378):61-67.
  • [54]Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, et al.: Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 2009, 361(5):455-467.
  • [55]Aponte SL, Díaz G, Pava Z, Echeverry DF, Ibarguen D, Rios M, Murcia LM, Quelal C, Murillo C, Gil P, et al.: Sentinel network for monitoring in vitro susceptibility of Plasmodium falciparum to antimalarial drugs in Colombia: a proof of concept. Mem Inst Oswaldo Cruz 2011, 106(Suppl 1):123-129.
  • [56]Balding DJ: A tutorial on statistical methods for population association studies. Nat Rev Genet 2006, 7(10):781-791.
  • [57]Manske M, Miotto O, Campino S, Auburn S, Almagro-Garcia J, Maslen G, O’Brien J, Djimde A, Doumbo O, Zongo I, et al.: Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature 2012, 487(7404):375-379.
  • [58]Tan JC, Miller BA, Tan A, Patel JJ, Cheeseman IH, Anderson TJ, Manske M, Maslen G, Kwiatkowski DP, Ferdig MT: An optimized microarray platform for assaying genomic variation in Plasmodium falciparum field populations. Genome Biol 2011, 12(4):R35. BioMed Central Full Text
  • [59]Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, et al.: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 2006, 38(2):203-208.
  • [60]Mu J, Awadalla P, Duan J, McGee KM, Joy DA, McVean GA, Su XZ: Recombination hotspots and population structure in Plasmodium falciparum. PLoS Biol 2005, 3(10):e335.
  • [61]Neafsey DE, Schaffner SF, Volkman SK, Park D, Montgomery P, Milner DA, Lukens A, Rosen D, Daniels R, Houde N, et al.: Genome-wide SNP genotyping highlights the role of natural selection in Plasmodium falciparum population divergence. Genome Biol 2008, 9(12):R171. BioMed Central Full Text
  • [62]Peakall R, Smouse P: GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 2006, 6(1):288-295.
  文献评价指标  
  下载次数:70次 浏览次数:18次