期刊论文详细信息
BMC Evolutionary Biology
A tensorial approach to the inversion of group-based phylogenetic models
Barbara R Holland1  Peter D Jarvis1  Jeremy G Sumner1 
[1] School of Physical Sciences, University of Tasmania, Hobart TAS 7001, Australia
关键词: Markov chains;    Symmetry;    Representation theory;    Groups;   
Others  :  1121794
DOI  :  10.1186/s12862-014-0236-6
 received in 2014-04-15, accepted in 2014-11-06,  发布年份 2014
PDF
【 摘 要 】

Background

Hadamard conjugation is part of the standard mathematical armoury in the analysis of molecular phylogenetic methods. For group-based models, the approach provides a one-to-one correspondence between the so-called “edge length” and “sequence” spectrum on a phylogenetic tree. The Hadamard conjugation has been used in diverse phylogenetic applications not only for inference but also as an important conceptual tool for thinking about molecular data leading to generalizations beyond strictly tree-like evolutionary modelling.

Results

For general group-based models of phylogenetic branching processes, we reformulate the problem of constructing a one-one correspondence between pattern probabilities and edge parameters. This takes a classic result previously shown through use of Fourier analysis and presents it in the language of tensors and group representation theory. This derivation makes it clear why the inversion is possible, because, under their usual definition, group-based models are defined for abelian groups only.

Conclusion

We provide an inversion of group-based phylogenetic models that can implemented using matrix multiplication between rectangular matrices indexed by ordered-partitions of varying sizes. Our approach provides additional context for the construction of phylogenetic probability distributions on network structures, and highlights the potential limitations of restricting to group-based models in this setting.

【 授权许可】

   
2014 Sumner et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150213012321420.pdf 454KB PDF download
Figure 2. 9KB Image download
Figure 1. 7KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Felsenstein J: Inferring Phylogenies . Sinauer Associates, Sunderland; 2004.
  • [2]Semple C, Steel M: Phylogenetics . Oxford University Press, Oxford; 2003.
  • [3]Hendy MD, Penny D: A framework for the quantitative study of evolutionary trees. Syst Zool 1989, 38:297-309.
  • [4]Hendy MD: The relationship between simple evolutionary tree models and observable sequence data. Syst Zool 1989, 38:310-321.
  • [5]Hendy MD, Penny D: Spectral analysis of phylogenetic data. J Class 1993, 10:1-20.
  • [6]Steel M, Hendy M, Székely L, Erdös P: Spectral analysis and a closest tree method for genetic sequences. Appl Math Lett 1992, 5(6):63-67.
  • [7]Székely LA, Erdos P, Steel M, Penny D: A fourier inversion formula for evolutionary trees. Appl Math Lett 1993, 6(2):13-16.
  • [8]Hendy MD, Penny D, Steel M: A discrete Fourier analysis for evolutionary trees. Proc Natl Acad Sci 1994, 91:3339-3343.
  • [9]Steel MA: Székely LAErdős PL: Fourier calculus on evolutionary trees. Adv Appl Math 1993, 14:200-216.
  • [10]Hendy MD, Charleston MA: Hadamard conjugation: a versatile tool for modelling nucleotide sequence evolution. New Zeal J Bot 1993, 31:231-237.
  • [11]Holland BR, Penny D, Hendy MD: Outgroup misplacement and phylogenetic inaccuracy under a molecular clock – a simulation study. Syst Biol 2003, 52:229-238.
  • [12]Hendy MD: A combinatorial description of the closest tree algorithm for finding evolutionary trees. Discrete Math 1991, 96:51-58.
  • [13]Lento GM, Hickson RE, Chambers GK, Penny D: Use of spectral analysis to test hypotheses on the origin of pinninpeds. Mol Biol Evol 1995, 12:28-52.
  • [14]Huber KT, Watson EE, Hendy MD: An algorithm for constructing local regions in a phylogenetic network. Mol Phylogenet Evol 2001, 19:1-8.
  • [15]Huber KT, Langton M, Penny D, Moulton V, Hendy M: Spectronet: a package for computing spectra and median networks. Appl Bioinform 2002, 1:2041-2059.
  • [16]Schliep KP: Some applications of statistical phylogenetics. Ph.D. thesis. Massey University; 2009.
  • [17]von Haeseler A, Churchill GA: Network models for sequence evolution. J Mol Evol 1993, 37:77-85.
  • [18]Bryant D: Extending tree models to split networks. In Algebraic Statistics and Computational Biology . Edited by Pachter L, Sturmfels B. Cambridge University Press, Cambridge; 2005:297-368.
  • [19]Bryant D: Hadamard phylogenetic methods and the n -taxon process. Bull Math Biol 2009, 71:297-309.
  • [20]Matsen FA, Steel M: Phylogenetic mixtures on a single tree can mimic a tree of another topology. Syst Biol 2007, 56:767-775.
  • [21]Matsen FA, Mossel E, Steel M: Mixed-up trees: the structure of phylogenetic mixtures. Bull Math Biol 2008, 70:1115-1139.
  • [22]Griffiths RC, Majoram P: Ancestral inference from samples of DNA sequences with recombination. J Comput Biol 1996, 3:479-502.
  • [23]Griffiths RC, Marjoram P: An ancestral recombination graph. In Progress in Population Genetics and Human Evolution, Volume 87 of IMA volumes in mathematics and its applications . Springer Verlag, Berlin; 1997:257-270.
  • [24]Jin G, Nakhleh L, Snir S, Tuller T: Maximum likelihood of phylogenetic networks. Bioinformatics 2006, 21:2604-2611.
  • [25]Strimmer K, Moulton V: Likelihood analysis of phylogenetic networks using directed graphical models. Mol Biol Evol 2000, 17:875-881.
  • [26]Strimmer K, Wiuf C, Moulton V: Recombination analysis using directed graphical models. Mol Biol Evol 2001, 18:97-99.
  • [27]Sumner JG, Holland BR, Jarvis PD: The algebra of the general Markov model on trees and networks. Bull Math Biol 2012, 74(4):858-880.
  • [28]Sumner JG, Charleston MA, Jermiin LS, Jarvis PD: Markov invariants, plethysms, and phylogenetics. J Theor Biol 2008, 253:601-615.
  • [29]Sumner JG, Jarvis PD: Markov invariants and the isotropy subgroup of a quartet tree. J Theor Biol 2009, 258:302-310.
  • [30]Holland BR, Jarvis PD, Sumner JG: Low-parameter phylogenetic inference under the general markov model. Syst Biol 2013, 62:78-92.
  • [31]Bashford JD, Jarvis PD, Sumner JG, Steel MA: U(1)×U(1)×U(1) symmetry of the Kimura 3ST model and phylogenetic branching processes. J Phys A Math Gen 2004, 37:L1-L9.
  • [32]Sumner JG, Fernández-Sánchez J, Jarvis PD: Lie Markov models. J Theor Biol 2012, 298:16-31.
  • [33]Sagan BE: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions . Springer, New York; 2001.
  • [34]Evans SN, Speed T: Invariants of some probability models used in phylogenetic inference. Ann Stat 1993, 21:355-377.
  • [35]Sumner JG, Jarvis PD: Entanglement invariants and phylogenetic branching. J Math Biol 2005, 51:18-36.
  • [36]Kimura M: Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci 1981, 78:1454-1458.
  文献评价指标  
  下载次数:28次 浏览次数:36次