期刊论文详细信息
BMC Research Notes
Decoding the informational properties of the RNA polymerase II Carboxy Terminal Domain
Jim Karagiannis1 
[1] Department of Biology, University of Western Ontario, London, ON, Canada
关键词: Budding yeast;    Fission yeast;    Phosphatase;    Kinase;    Phosphorylation;    Information theory;    Carboxy terminal domain;    RNA polymerase II;    Transcription;   
Others  :  1166415
DOI  :  10.1186/1756-0500-5-241
 received in 2012-01-31, accepted in 2012-04-30,  发布年份 2012
PDF
【 摘 要 】

Background

The largest sub-unit of RNA polymerase II, Rpb1p, has long been known to be subject to post-translational modifications that influence various aspects of pre-mRNA processing. However, the portion of the Rpb1p molecule subject to these modifications – the carboxy-terminal domain or CTD – remains the subject of much fascination. Intriguingly, the CTD possesses a unique repetitive structure consisting of multiple repeats of the heptapeptide sequence, Y1S2P3T4S5P6S7. While these repeats are critical for viability, they are not required for basal transcriptional activity in vitro. This suggests that – even though the CTD is not catalytically essential – it must perform other critical functions in eukaryotes.

Presentation of the Hypothesis

By formally applying the long-standing mathematical principles of information theory, I explore the hypothesis that complex post-translational modifications of the CTD represent a means for the dynamic “programming” of Rpb1p and thus for the discrete modulation of the expression of specific gene subsets in eukaryotes.

Testing the Hypothesis

Empirical means for testing the informational capacity and regulatory potential of the CTD – based on simple genetic analysis in yeast model systems – are put forward and discussed.

Implications of the Hypothesis

These ideas imply that the controlled manipulation of CTD effectors could be used to “program” the CTD and thus to manipulate biological processes in eukaryotes in a definable manner.

【 授权许可】

   
2012 Karagiannis; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150416044152606.pdf 298KB PDF download
Figure 1. 32KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Dermitzakis ET: From gene expression to disease risk. Nat Genet 2008, 40:492-493.
  • [2]Farber CR, Lusis AJ: Integrating global gene expression analysis and genetics. Adv Genet 2008, 60:571-601.
  • [3]Goodrich JA, Tjian R: Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation. Nat Rev Genet 2010, 11:549-558.
  • [4]Lee TI, Young RA: Transcription of eukaryotic protein-coding genes. Annu Rev Genet 2000, 34:77-137.
  • [5]Rockman MV, Kruglyak L: Genetics of global gene expression. Nat Rev Genet 2006, 7:862-872.
  • [6]Semenza GL: Transcriptional regulation of gene expression: mechanisms and pathophysiology. Hum Mutat 1994, 3:180-199.
  • [7]Villard J: Transcription regulation and human diseases. Swiss Med Wkly 2004, 134:571-579.
  • [8]Howe KJ: RNA polymerase II conducts a symphony of pre-mRNA processing activities. Biochim Biophys Acta 2002, 1577:308-324.
  • [9]Meinhart A, Kamenski T, Hoeppner S, Baumli S, Cramer P: A structural perspective of CTD function. Genes Dev 2005, 19:1401-1415.
  • [10]Phatnani HP, Greenleaf AL: Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 2006, 20:2922-2936.
  • [11]Carlson M: Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD. Annu Rev Cell Dev Biol 1997, 13:1-23.
  • [12]Prelich G: RNA polymerase II carboxy-terminal domain kinases: emerging clues to their function. Eukaryot Cell 2002, 1:153-162.
  • [13]Guo Z, Stiller JW: Comparative genomics of cyclin-dependent kinases suggest co-evolution of the RNAP II C-terminal domain and CTD-directed CDKs. BMC Genomics 2004, 5:69. BioMed Central Full Text
  • [14]Stiller JW, Hall BD: Evolution of the RNA polymerase II C-terminal domain. Proc Natl Acad Sci U S A 2002, 99:6091-6096.
  • [15]Patturajan M, Schulte RJ, Sefton BM, Berezney R, Vincent M, Bensaude O, Warren SL, Corden JL: Growth-related changes in phosphorylation of yeast RNA polymerase II. J Biol Chem 1998, 273:4689-4694.
  • [16]Ostapenko D, Solomon MJ: Budding yeast CTDK-I is required for DNA damage-induced transcription. Eukaryot Cell 2003, 2:274-283.
  • [17]Jeong SJ, Kim HJ, Yang YJ, Seol JH, Jung BY, Han JW, Lee HW, Cho EJ: Role of RNA polymerase II carboxy terminal domain phosphorylation in DNA damage response. J Microbiol 2005, 43:516-522.
  • [18]Lee KM, Miklos I, Du H, Watt S, Szilagyi Z, Saiz JE, Madabhushi R, Penkett CJ, Sipiczki M, Bahler J, Fisher RP: Impairment of the TFIIH-associated CDK-activating kinase selectively affects cell cycle-regulated gene expression in fission yeast. Mol Biol Cell 2005, 16:2734-2745.
  • [19]Yeo M, Lee SK, Lee B, Ruiz EC, Pfaff SL, Gill GN: Small CTD phosphatases function in silencing neuronal gene expression. Science 2005, 307:596-600.
  • [20]Proft M, Mas G, de Nadal E, Vendrell A, Noriega N, Struhl K, Posas F: The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Mol Cell 2006, 23:241-250.
  • [21]Karagiannis J, Balasubramanian MK: A cyclin-dependent kinase that promotes cytokinesis through modulating phosphorylation of the carboxy terminal domain of the RNA Pol II Rpb1p sub-unit. PLoS One 2007, 2:e433.
  • [22]Coudreuse D, van Bakel H, Dewez M, Soutourina J, Parnell T, Vandenhaute J, Cairns B, Werner M, Hermand D: A gene-specific requirement of RNA polymerase II CTD phosphorylation for sexual differentiation in S. pombe. Curr Biol 2010, 20:1053-1064.
  • [23]Saberianfar R, Cunningham-Dunlop S, Karagiannis J: Global gene expression analysis of fission yeast mutants impaired in Ser-2 phosphorylation of the RNA pol II carboxy terminal domain. PLoS One 2011, 6:e24694.
  • [24]Sukegawa Y, Yamashita A, Yamamoto M: The fission yeast stress-responsive MAPK pathway promotes meiosis via the phosphorylation of pol II CTD in response to environmental and feedback cues. PLoS Genet 2011, 7:e1002387.
  • [25]Shannon CE: A mathematical theory of communication. At&T Tech J 1948, 27:379-423.
  • [26]Chaitin GJ: Algorithmic information-theory. Ibm J Res Dev 1977, 21:350-359.
  • [27]Chapman RD, Heidemann M, Albert TK, Mailhammer R, Flatley A, Meisterernst M, Kremmer E, Eick D: Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 2007, 318:1780-1782.
  • [28]Egloff S, O’Reilly D, Chapman RD, Taylor A, Tanzhaus K, Pitts L, Eick D, Murphy S: Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 2007, 318:1777-1779.
  • [29]Kobe Bryant: Kolmogor. An: logical basis for information theory and probability theory. Ieee T Inform Theory 1968, 14:662.
  • [30]Solomonoff RJ: Formal theory of inductive inference .I. Inform Control 1964, 7:1.
  • [31]Solomonoff RJ: Formal Theory of Inductive Inference .2. Inform Control 1964, 7:224.
  • [32]Baryshnikova A, Costanzo M, Dixon S, Vizeacoumar FJ, Myers CL, Andrews B, Boone C: Synthetic genetic array (SGA) analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Methods Enzymol 2010, 470:145-179.
  文献评价指标  
  下载次数:12次 浏览次数:21次