期刊论文详细信息
BMC Medicine
New horizons in tumor microenvironment biology: challenges and opportunities
Yu Sun1  Guohong Hu2  Yufang Shi3  Ying Wang2  Pengfei Yu2  Liangyu Lin2  Xueqian Zhuang2  Fei Chen2 
[1] Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiaotong University School of Medicine (SJTUSM), 320 Yue Yang Road, Biological Research Building A, Shanghai 200031, China;Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiaotong University School of Medicine, Shanghai 200031, China;Soochow Institutes for Translational Medicine, Soochow University, Suzhou 215123, China
关键词: Tumor microenvironment;    Translational medicine;    Therapeutic intervention;    Targeting strategy;    Immunomodulation;    Distant metastasis;    Combination therapy;    Clinical oncology;    Acquired resistance;   
Others  :  1134629
DOI  :  10.1186/s12916-015-0278-7
 received in 2014-10-13, accepted in 2015-01-16,  发布年份 2015
PDF
【 摘 要 】

The tumor microenvironment (TME) is being increasingly recognized as a key factor in multiple stages of disease progression, particularly local resistance, immune-escaping, and distant metastasis, thereby substantially impacting the future development of frontline interventions in clinical oncology. An appropriate understanding of the TME promotes evaluation and selection of candidate agents to control malignancies at both the primary sites as well as the metastatic settings. This review presents a timely outline of research advances in TME biology and highlights the prospect of targeting the TME as a critical strategy to overcome acquired resistance, prevent metastasis, and improve therapeutic efficacy. As benign cells in TME niches actively modulate response of cancer cells to a broad range of standard chemotherapies and targeted agents, cancer-oriented therapeutics should be combined with TME-targeting treatments to achieve optimal clinical outcomes. Overall, a body of updated information is delivered to summarize recently emerging and rapidly progressing aspects of TME studies, and to provide a significant guideline for prospective development of personalized medicine, with the long term aim of providing a cure for cancer patients.

【 授权许可】

   
2015 Chen et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150306022557119.pdf 2322KB PDF download
Figure 2. 59KB Image download
Figure 1. 122KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Joyce JA: Therapeutic targeting of the tumor microenvironment. Cancer Cell 2005, 7:513-20.
  • [2]Carreira S, Romanel A, Goodall J, Grist E, Ferraldeschi R, Miranda S, et al.: Tumor clone dynamics in lethal prostate cancer. Sci Transl Med 2014, 6:254ra125.
  • [3]Marusyk A, Tabassum DP, Altrock PM, Almendro V, Michor F, Polyak K: Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 2014, 514:54-8.
  • [4]Mroue R, Bissell MJ: Three-dimensional cultures of mouse mammary epithelial cells. Methods Mol Biol 2013, 945:221-50.
  • [5]Chen F, Qi X, Qian M, Dai Y, Sun Y: Tackling the tumor microenvironment: what challenge does it pose to anticancer therapies? Protein Cell 2014, 5:816-26.
  • [6]Junttila MR, de Sauvage FJ: Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013, 501:346-54.
  • [7]Meric-Bernstam F, Mills GB: Overcoming implementation challenges of personalized cancer therapy. Nat Rev Clin Oncol 2012, 9:542-8.
  • [8]Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, et al.: Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 2014, 25:719-34.
  • [9]Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, et al.: Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 2014, 25:735-47.
  • [10]Dittmer J, Leyh B. The impact of tumor stroma on drug response in breast cancer. Semin Cancer Biol. 2014. [Ahead of print.]
  • [11]Valencia T, Kim JY, Abu-Baker S, Moscat-Pardos J, Ahn CS, Reina-Campos M, et al.: Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis. Cancer Cell 2014, 26:121-35.
  • [12]Scherz-Shouval R, Santagata S, Mendillo ML, Sholl LM, Ben-Aharon I, Beck AH, et al.: The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell 2014, 158:564-78.
  • [13]Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, et al.: Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A 2013, 110:20212-7.
  • [14]Torres S, Bartolome RA, Mendes M, Barderas R, Fernandez-Acenero MJ, Pelaez-Garcia A, et al.: Proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin Cancer Res 2013, 19:6006-19.
  • [15]Rupp C, Scherzer M, Rudisch A, Unger C, Haslinger C, Schweifer N, et al. IGFBP7, a novel tumor stroma marker, with growth-promoting effects in colon cancer through a paracrine tumor-stroma interaction. Oncogene. 2014. [Ahead of print.]
  • [16]Birnie R, Bryce SD, Roome C, Dussupt V, Droop A, Lang SH, et al.: Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol 2008, 9:R83. BioMed Central Full Text
  • [17]Fridman WH, Pages F, Sautes-Fridman C, Galon J: The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012, 12:298-306.
  • [18]Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012, 12:252-64.
  • [19]Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D: Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 2012, 21:836-47.
  • [20]Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ, et al.: Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 2012, 21:822-35.
  • [21]Motz GT, Coukos G: The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev Immunol 2011, 11:702-11.
  • [22]de Visser KE, Korets LV, Coussens LM: De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 2005, 7:411-23.
  • [23]Noy R, Pollard JW: Tumor-associated macrophages: from mechanisms to therapy. Immunity 2014, 41:49-61.
  • [24]Memarzadeh S, Xin L, Mulholland DJ, Mansukhani A, Wu H, Teitell MA, et al.: Enhanced paracrine FGF10 expression promotes formation of multifocal prostate adenocarcinoma and an increase in epithelial androgen receptor. Cancer Cell 2007, 12:572-85.
  • [25]Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, et al.: TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004, 303:848-51.
  • [26]Sun Y. Translational horizons in the tumor microenvironment: harnessing breakthroughs and targeting cures. Med Res Rev. 2015. [Ahead of print].
  • [27]Chong CR, Janne PA: The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med 2013, 19:1389-400.
  • [28]Corso S, Giordano S: Cell-autonomous and non-cell-autonomous mechanisms of HGF/MET-driven resistance to targeted therapies: from basic research to a clinical perspective. Cancer Discov 2013, 3:978-92.
  • [29]McMillin DW, Negri JM, Mitsiades CS: The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nat Rev Drug Discov 2013, 12:217-28.
  • [30]Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG: Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 2013, 13:714-26.
  • [31]Wan LL, Pantel K, Kang YB: Tumor metastasis: moving new biological insights into the clinic. Nat Med 2013, 19:1450-64.
  • [32]Eckstein N, Servan K, Hildebrandt B, Politz A, von Jonquieres G, Wolf-Kummeth S, et al.: Hyperactivation of the insulin-like growth factor receptor I signaling pathway is an essential event for cisplatin resistance of ovarian cancer cells. Cancer Res 2009, 69:2996-3003.
  • [33]Williams RT, den Besten W, Sherr CJ: Cytokine-dependent imatinib resistance in mouse BCR-ABL(+), Arf-null lymphoblastic leukemia. Gene Dev 2007, 21:2283-7.
  • [34]Shree T, Olson OC, Elie BT, Kester JC, Garfall AL, Simpson K, et al.: Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev 2011, 25:2465-79.
  • [35]Visvader JE, Lindeman GJ: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 2008, 8:755-68.
  • [36]Smith MP, Sanchez-Laorden B, O'Brien K, Brunton H, Ferguson J, Young H, et al.: The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFalpha. Cancer Discov 2014, 4:1214-29.
  • [37]Gilbert LA, Hemann MT: DNA damage-mediated induction of a chemoresistant niche. Cell 2010, 143:355-66.
  • [38]Sun Y, Nelson PS: Molecular pathways: involving microenvironment damage responses in cancer therapy resistance. Clin Cancer Res 2012, 18:4019-25.
  • [39]Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, et al.: Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 2012, 18:1359-68.
  • [40]Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, et al.: A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 2012, 150:165-78.
  • [41]McMillin DW, Delmore J, Negri J, Ooi M, Klippel S, Miduturu CV, et al.: Microenvironmental influence on pre-clinical activity of polo-like kinase inhibition in multiple myeloma: implications for clinical translation. PLoS One 2011, 6:e20226.
  • [42]Sun XS, Guevara N, Fakhry N, Sun SR, Marcy PY, Santini J, et al.: Radiation therapy in thyroid cancer. Cancer Radiother 2013, 17:233-243. quiz 255–236, 258
  • [43]Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, et al.: Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 2012, 487:505-9.
  • [44]Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, et al.: Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 2012, 487:500-4.
  • [45]Tefferi A: Challenges facing JAK inhibitor therapy for myeloproliferative neoplasms. N Engl J Med 2012, 366:844-6.
  • [46]Azuma K, Kawahara A, Sonoda K, Nakashima K, Tashiro K, Watari K, et al.: FGFR1 activation is an escape mechanism in human lung cancer cells resistant to afatinib, a pan-EGFR family kinase inhibitor. Oncotarget 2014, 5:5908-19.
  • [47]Lee JK, Joo KM, Lee J, Yoon Y, Nam DH: Targeting the epithelial to mesenchymal transition in glioblastoma: the emerging role of MET signaling. Onco Targets Ther 2014, 7:1933-44.
  • [48]Shostak K, Zhang X, Hubert P, Göktuna SI, Jiang Z, Klevernic I, et al.: NF-κB-induced KIAA1199 promotes survival through EGFR signalling. Nat Commun 2014, 5:5232.
  • [49]Jung YH, Kim JK, Shiozawa Y, Wang JC, Mishra A, Joseph J, et al.: Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun 2013, 4:1795.
  • [50]Rosano L, Cianfrocca R, Tocci P, Spinella F, Di Castro V, Caprara V, et al.: Endothelin A receptor/Beta-arrestin signaling to the Wnt pathway renders ovarian cancer cells resistant to chemotherapy. Cancer Res 2014, 74:7453-64.
  • [51]Jingushi K, Ueda Y, Kitae K, Hase H, Egawa H, Ohshio I, et al. miRNA-629 targets TRIM33 to promote TGF-beta/Smad signaling and metastatic phenotypes in ccRCC. Mol Cancer Res. 2014. [Ahead of print].
  • [52]Sui H, Zhu L, Deng W, Li Q: Epithelial-mesenchymal transition and drug resistance: role, molecular mechanisms, and therapeutic strategies. Oncol Res Treat 2014, 37:584-9.
  • [53]Duan CW, Shi J, Chen J, Wang B, Yu YH, Qin X, et al.: Leukemia propagating cells rebuild an evolving niche in response to therapy. Cancer Cell 2014, 25:778-93.
  • [54]Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al.: Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012, 481:506-10.
  • [55]Koh BI, Kang YB: The pro-metastatic role of bone marrow-derived cells: a focus on MSCs and regulatory T cells. Embo Rep 2012, 13:412-22.
  • [56]Leijten J, Georgi N, Moreira Teixeira L, van Blitterswijk CA, Post JN, Karperien M: Metabolic programming of mesenchymal stromal cells by oxygen tension directs chondrogenic cell fate. Proc Natl Acad Sci U S A 2014, 111:13954-9.
  • [57]Maertens L, Erpicum C, Detry B, Blacher S, Lenoir B, Carnet O, et al.: Bone marrow-derived mesenchymal stem cells drive lymphangiogenesis. PloS One 2014, 9:e106976.
  • [58]Wang Y, Chen X, Cao W, Shi Y: Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 2014, 15:1009-16.
  • [59]Pacini S: Deterministic and stochastic approaches in the clinical application of mesenchymal stromal cells (MSCs). Front Cell Dev Biol 2014, 2:50.
  • [60]Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, et al.: Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 2011, 19:257-72.
  • [61]Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM, et al.: Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 2007, 13:5020-7.
  • [62]Suzuki T, Kawamura K, Li Q, Okamoto S, Tada Y, Tatsumi K, et al.: Mesenchymal stem cells are efficiently transduced with adenoviruses bearing type 35-derived fibers and the transduced cells with the IL-28A gene produces cytotoxicity to lung carcinoma cells co-cultured. BMC Cancer 2014, 14:713. BioMed Central Full Text
  • [63]Leng L, Wang Y, He N, Wang D, Zhao Q, Feng G, et al.: Molecular imaging for assessment of mesenchymal stem cells mediated breast cancer therapy. Biomaterials 2014, 35:5162-70.
  • [64]Serakinci N, Christensen R, Fahrioglu U, Sorensen FB, Dagaens-Hansen F, Hajek M, et al.: Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma. Cancer Biother Radio 2011, 26:767-73.
  • [65]Li W, Ren G, Huang Y, Su J, Han Y, Li J, et al.: Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ 2012, 19:1505-13.
  • [66]Ren GW, Zhao X, Wang Y, Zhang X, Chen XD, Xu CL, et al.: CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNF alpha. Cell Stem Cell 2012, 11:812-24.
  • [67]Ren GW, Zhang LY, Zhao X, Xu GW, Zhang YY, Roberts AI, et al.: Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2008, 2:141-50.
  • [68]Han X, Yang Q, Lin L, Xu C, Zheng C, Chen X, et al.: Interleukin-17 enhances immunosuppression by mesenchymal stem cells. Cell Death Differ 2014, 21:1758-68.
  • [69]Huang Y, Yu P, Li W, Ren G, Roberts AI, Cao W, et al.: p53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation. Oncogene 2014, 33:3830-8.
  • [70]Ren GW, Su JJ, Zhang LY, Zhao X, Ling WF, L'Huillie A, et al.: Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 2009, 27:1954-62.
  • [71]Ling WF, Zhang JM, Yuan ZR, Ren GW, Zhang LY, Chen XD, et al.: Mesenchymal stem cells use IDO to regulate immunity in tumor microenvironment. Cancer Res 2014, 74:1576-87.
  • [72]Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al.: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012, 18:883-91.
  • [73]Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, et al.: BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 2013, 123:1542-55.
  • [74]Castells M, Milhas D, Gandy C, Thibault B, Rafii A, Delord JP, et al.: Microenvironment mesenchymal cells protect ovarian cancer cell lines from apoptosis by inhibiting XIAP inactivation. Cell Death Dis 2013, 4:e887.
  • [75]Roodhart JML, Daenen LGM, Stigter ECA, Prins HJ, Gerrits J, Houthuijzen JM, et al.: Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell 2011, 20:370-83.
  • [76]Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, et al.: Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4(+)CD25(high)FOXP3(+) regulatory T cells. Stem Cells 2008, 26:212-22.
  • [77]Di Ianni M, Del Papa B, De Ioanni M, Moretti L, Bonifacio E, Cecchini D, et al.: Mesenchymal cells recruit and regulate T regulatory cells. Exp Hematol 2008, 36:309-18.
  • [78]Valastyan S, Weinberg RA: Tumor metastasis: molecular insights and evolving paradigms. Cell 2011, 147:275-92.
  • [79]Paget S: The distribution of secondary growths in cancer of the breast. Lancet 1889, 133:571-3.
  • [80]Paget S: The distribution of secondary growths in cancer of the breast. 1889. Canc Metastasis Rev 1989, 8:98-101.
  • [81]Bissell M, Hines WC: Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 2011, 17:320-9.
  • [82]Augsten M, Sjoberg E, Frings O, Vorrink SU, Frijhoff J, Olsson E, et al.: Cancer-associated fibroblasts expressing CXCL14 rely upon NOS1-derived nitric oxide signaling for their tumor-supporting properties. Cancer Res 2014, 74:2999-3010.
  • [83]Kuo PL, Huang MS, Hung JY, Chou SH, Chiang SY, Huang YF, et al.: Synergistic effect of lung tumor-associated dendritic cell-derived HB-EGF and CXCL5 on cancer progression. Int J Cancer 2014, 135:96-108.
  • [84]Branco-Price C, Zhang N, Schnelle M, Evans C, Katschinski DM, Liao D, et al.: Endothelial cell HIF-1 alpha and HIF-2 alpha differentially regulate metastatic success. Cancer Cell 2012, 21:52-65.
  • [85]Sceneay J, Chow MT, Chen A, Halse HM, Wong CSF, Andrews DM, et al.: Primary tumor hypoxia recruits CD11b(+)/Ly6C(med)/Ly6G(+) immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res 2012, 72:3906-11.
  • [86]Sonoshita M, Aoki M, Fuwa H, Aoki K, Hosogi H, Sakai Y, et al.: Suppression of colon cancer metastasis by Aes through inhibition of notch signaling. Cancer Cell 2011, 19:125-37.
  • [87]Reymond N, Im JH, Garg R, Vega FM, d'Agua BB, Riou P, et al.: Cdc42 promotes transendothelial migration of cancer cells through beta 1 integrin. J Cell Biol 2012, 199:653-68.
  • [88]Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E: Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 2009, 11:1287-96.
  • [89]Psaila B, Lyden D: The metastatic niche: adapting the foreign soil. Nat Rev Cancer 2009, 9:285-93.
  • [90]Catena R, Bhattacharya N, El Rayes T, Wang SM, Choi H, Gao DC, et al.: Bone marrow-derived Gr1(+) cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1. Cancer Discov 2013, 3:578-89.
  • [91]Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R: Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 2011, 20:300-14.
  • [92]Quail DF, Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013, 19:1423-37.
  • [93]Castano Z, Marsh T, Tadipatri R, Kuznetsov HS, Al-Shahrour F, Paktinat M, et al.: Stromal EGF and IGF-I together modulate plasticity of disseminated triple-negative breast tumors. Cancer Discov 2013, 3:922-35.
  • [94]Zhang Y, Yang PY, Wang XF: Microenvironmental regulation of cancer metastasis by miRNAs. Trends Cell Biol 2014, 24:153-60.
  • [95]Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T: Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem 2013, 288:10849-59.
  • [96]Yang M, Chen JQ, Su F, Yu B, Su FX, Lin L, et al.: Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 2011, 10:117. BioMed Central Full Text
  • [97]Marusyk A, Almendro V, Polyak K: Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 2012, 12:323-34.
  • [98]Garraway LA, Lander ES: Lessons from the cancer genome. Cell 2013, 153:17-37.
  • [99]Fang H, DeClerck YA: Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res 2013, 73:4965-77.
  • [100]Berlin J, Bendell JC, Hart LL, Firdaus I, Gore I, Hermann RC, et al.: A randomized phase II trial of vismodegib versus placebo with FOLFOX or FOLFIRI and bevacizumab in patients with previously untreated metastatic colorectal cancer. Clin Cancer Res 2013, 19:258-67.
  • [101]Kaye SB, Fehrenbacher L, Holloway R, Amit A, Karlan B, Slomovitz B, et al.: A phase II, randomized, placebo-controlled study of vismodegib as maintenance therapy in patients with ovarian cancer in second or third complete remission. Clin Cancer Res 2012, 18:6509-18.
  • [102]Alspach E, Flanagan KC, Luo XM, Ruhland MK, Huang H, Pazolli E, et al.: p38MAPK plays a crucial role in stromal-mediated tumorigenesis. Cancer Discov 2014, 4:716-29.
  • [103]Bellmunt J, Pons F, Orsola A: Molecular determinants of response to cisplatin-based neoadjuvant chemotherapy. Curr Opin Urol 2013, 23:466-71.
  • [104]Tam V, Hooker CM, Molena D, Hulbert A, Lee B, Kleinberg L, et al. Clinical response to neoadjuvant therapy to predict success of adjuvant chemotherapy for esophageal adenocarcinoma. J Clin Oncol. 2014;32(Suppl 3; abstr 137).
  文献评价指标  
  下载次数:12次 浏览次数:26次