期刊论文详细信息
BMC Evolutionary Biology
MitoCOGs: clusters of orthologous genes from mitochondria and implications for the evolution of eukaryotes
Eugene V Koonin1  Igor B Rogozin1  Sivakumar Kannan1 
[1] National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda 20894, MD, USA
关键词: Clusters of orthologous genes;    Introns;    Gene transfer;    Gene loss;    Genome evolution;    Mitochondria;   
Others  :  1121854
DOI  :  10.1186/s12862-014-0237-5
 received in 2014-07-30, accepted in 2014-11-07,  发布年份 2014
PDF
【 摘 要 】

Background

Mitochondria are ubiquitous membranous organelles of eukaryotic cells that evolved from an alpha-proteobacterial endosymbiont and possess a small genome that encompasses from 3 to 106 genes. Accumulation of thousands of mitochondrial genomes from diverse groups of eukaryotes provides an opportunity for a comprehensive reconstruction of the evolution of the mitochondrial gene repertoire.

Results

Clusters of orthologous mitochondrial protein-coding genes (MitoCOGs) were constructed from all available mitochondrial genomes and complemented with nuclear orthologs of mitochondrial genes. With minimal exceptions, the mitochondrial gene complements of eukaryotes are subsets of the superset of 66 genes found in jakobids. Reconstruction of the evolution of mitochondrial genomes indicates that the mitochondrial gene set of the last common ancestor of the extant eukaryotes was slightly larger than that of jakobids. This superset of mitochondrial genes likely represents an intermediate stage following the loss and transfer to the nucleus of most of the endosymbiont genes early in eukaryote evolution. Subsequent evolution in different lineages involved largely parallel transfer of ancestral endosymbiont genes to the nuclear genome. The intron density in nuclear orthologs of mitochondrial genes typically is nearly the same as in the rest of the genes in the respective genomes. However, in land plants, the intron density in nuclear orthologs of mitochondrial genes is almost 1.5-fold lower than the genomic mean, suggestive of ongoing transfer of functional genes from mitochondria to the nucleus.

Conclusions

The MitoCOGs are expected to become an important resource for the study of mitochondrial evolution. The nearly complete superset of mitochondrial genes in jakobids likely represents an intermediate stage in the evolution of eukaryotes after the initial, extensive loss and transfer of the endosymbiont genes. In addition, the bacterial multi-subunit RNA polymerase that is encoded in the jakobid mitochondrial genomes was replaced by a single-subunit phage-type RNA polymerase in the rest of the eukaryotes. These results are best compatible with the rooting of the eukaryotic tree between jakobids and the rest of the eukaryotes. The land plants are the only eukaryotic branch in which the gene transfer from the mitochondrial to the nuclear genome appears to be an active, ongoing process.

【 授权许可】

   
2014 Kannan et al.; licensee BioMed Central ltd.

【 预 览 】
附件列表
Files Size Format View
20150213013526815.pdf 846KB PDF download
Figure 6. 90KB Image download
Figure 5. 69KB Image download
Figure 4. 43KB Image download
Figure 3. 61KB Image download
Figure 2. 37KB Image download
Figure 1. 73KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Lane N, Martin WF: The origin of membrane bioenergetics. Cell 2012, 151(7):1406-1416.
  • [2]Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IA, Allen JF, Lane N, Martin WF: Early bioenergetic evolution. Philos Trans R Soc Lond B Biol Sci 2013, 368(1622):20130088.
  • [3]Tait SW, Green DR: Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 2010, 11(9):621-632.
  • [4]Embley TM: Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos Trans R Soc Lond B Biol Sci 2006, 361(1470):1055-1067.
  • [5]van der Giezen M, Tovar J: Degenerate mitochondria. EMBO Rep 2005, 6(6):525-530.
  • [6]Embley TM, Martin W: Eukaryotic evolution, changes and challenges. Nature 2006, 440(7084):623-630.
  • [7]Lang BF, Gray MW, Burger G: Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 1999, 33:351-397.
  • [8]Andersson SG, Karlberg O, Canback B, Kurland CG: On the origin of mitochondria: a genomics perspective. Philos Trans R Soc Lond B Biol Sci 2003, 358(1429):165-177. discussion 177–169
  • [9]Gray MW: Mitochondrial evolution. Cold Spring Harb Perspect Biol 2012, 4(9):a011403.
  • [10]Sicheritz-Ponten T, Andersson SG: A phylogenomic approach to microbial evolution. Nucleic Acids Res 2001, 29(2):545-552.
  • [11]Gray MW, Burger G, Lang BF: The origin and early evolution of mitochondria. Genome Biol 2001, 2(6):REVIEWS1018.
  • [12]Thrash JC, Boyd A, Huggett MJ, Grote J, Carini P, Yoder RJ, Robbertse B, Spatafora JW, Rappe MS, Giovannoni SJ: Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci Rep 2011, 1:13.
  • [13]Williams KP, Sobral BW, Dickerman AW: A robust species tree for the alphaproteobacteria. J Bacteriol 2007, 189(13):4578-4586.
  • [14]Fitzpatrick DA, Creevey CJ, McInerney JO: Genome phylogenies indicate a meaningful alpha-proteobacterial phylogeny and support a grouping of the mitochondria with the Rickettsiales. Mol Biol Evol 2006, 23(1):74-85.
  • [15]Degli Esposti M, Chouaia B, Comandatore F, Crotti E, Sassera D, Lievens PM, Daffonchio D, Bandi C: Evolution of mitochondria reconstructed from the energy metabolism of living bacteria. PLoS One 2014, 9(5):e96566.
  • [16]de Duve C: The origin of eukaryotes: a reappraisal. Nat Rev Genet 2007, 8(5):395-403.
  • [17]Cavalier-Smith T: Molecular phylogeny. Archaebacteria and Archezoa. Nature 1989, 339(6220):l00-l01.
  • [18]Kurland CG, Collins LJ, Penny D: Genomics and the irreducible nature of eukaryote cells. Science 2006, 312(5776):1011-1014.
  • [19]Poole A, Penny D: Eukaryote evolution: engulfed by speculation. Nature 2007, 447(7147):913.
  • [20]Koonin EV: The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol Direct 2006, 1:22.
  • [21]Martin W, Koonin EV: Introns and the origin of nucleus-cytosol compartmentalization. Nature 2006, 440(7080):41-45.
  • [22]Sagan L: On the origin of mitosing cells. J Theor Biol 1967, 14(3):255-274.
  • [23]Martin W, Muller M: The hydrogen hypothesis for the first eukaryote. Nature 1998, 392(6671):37-41.
  • [24]Lane N, Martin W: The energetics of genome complexity. Nature 2010, 467(7318):929-934.
  • [25]van der Giezen M: Hydrogenosomes and mitosomes: conservation and evolution of functions. J Eukaryot Microbiol 2009, 56(3):221-231.
  • [26]Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM: Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci 2010, 365(1541):713-727.
  • [27]Tachezy J, Sanchez LB, Muller M: Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol 2001, 18(10):1919-1928.
  • [28]Szklarczyk R, Huynen MA: Mosaic origin of the mitochondrial proteome. Proteomics 2010, 10(22):4012-4024.
  • [29]Gabaldon T, Huynen MA: From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism. PLoS Comput Biol 2007, 3(11):e219.
  • [30]Esser C, Ahmadinejad N, Wiegand C, Rotte C, Sebastiani F, Gelius-Dietrich G, Henze K, Kretschmann E, Richly E, Leister D, Bryant D, Steel MA, Lockhart PJ, Penny D, Martin W: A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol 2004, 21(9):1643-1660.
  • [31]Esser C, Martin W, Dagan T: The origin of mitochondria in light of a fluid prokaryotic chromosome model. Biol Lett 2007, 3(2):180-184.
  • [32]Shutt TE, Gray MW: Bacteriophage origins of mitochondrial replication and transcription proteins. Trends Genet 2006, 22(2):90-95.
  • [33]Filee J, Forterre P: Viral proteins functioning in organelles: a cryptic origin? Trends Microbiol 2005, 13(11):510-513.
  • [34]Dolezal P, Likic V, Tachezy J, Lithgow T: Evolution of the molecular machines for protein import into mitochondria. Science 2006, 313(5785):314-318.
  • [35]Karlberg O, Canback B, Kurland CG, Andersson SG: The dual origin of the yeast mitochondrial proteome. Yeast 2000, 17(3):170-187.
  • [36]Gabaldon T, Huynen MA: Reconstruction of the proto-mitochondrial metabolism. Science 2003, 301(5633):609.
  • [37]Gray MW: The pre-endosymbiont hypothesis: a new perspective on the origin and evolution of mitochondria. Cold Spring Harb Perspect Biol 2014, 6(3):a016097.
  • [38]Burger G, Gray MW, Forget L, Lang BF: Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol Evol 2013, 5(2):418-438.
  • [39]Lang BF, Burger G, O'Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW: An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 1997, 387(6632):493-497.
  • [40]Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UC, Podowski RM, Naslund AK, Eriksson AS, Winkler HH, Kurland CG: The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 1998, 396(6707):133-140.
  • [41]Meisinger C, Sickmann A, Pfanner N: The mitochondrial proteome: from inventory to function. Cell 2008, 134(1):22-24.
  • [42]Adams KL, Palmer JD: Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 2003, 29(3):380-395.
  • [43]Jukes TH, Osawa S: The genetic code in mitochondria and chloroplasts. Experientia 1990, 46(11–12):1117-1126.
  • [44]Allen JF: The function of genomes in bioenergetic organelles. Philos Trans R Soc Lond B Biol Sci 2003, 358(1429):19-37. discussion 37–18
  • [45]Allen JF: Why chloroplasts and mitochondria contain genomes. Comp Funct Genomics 2003, 4(1):31-36.
  • [46]Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on protein families. Science 1997, 278(5338):631-637.
  • [47]Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA: The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003, 4:41.
  • [48]Makarova KS, Sorokin AV, Novichkov PS, Wolf YI, Koonin EV: Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biol Direct 2007, 2:33.
  • [49]Yutin N, Wolf YI, Raoult D, Koonin EV: Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol J 2009, 6:223.
  • [50]O'Brien EA, Zhang Y, Wang E, Marie V, Badejoko W, Lang BF, Burger G: GOBASE: an organelle genome database. Nucleic Acids Res 2009, 37(Database issue):D946-D950.
  • [51]Kristensen DM, Kannan L, Coleman MK, Wolf YI, Sorokin A, Koonin EV, Mushegian A: A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches. Bioinformatics (Oxford, England) 2010, 26(12):1481-1487.
  • [52]Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004, 5:113.
  • [53]Csuros M: Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 2010, 26(15):1910-1912.
  • [54]Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW: The tree of eukaryotes. Trends Ecol Evol 2005, 20(12):670-676.
  • [55]Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ: Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups". Proc Natl Acad Sci U S A 2009, 106(10):3859-3864.
  • [56]He D, Fiz-Palacios O, Fu CJ, Fehling J, Tsai CC, Baldauf SL: An alternative root for the eukaryote tree of life. Curr Biol 2014, 24(4):465-470.
  • [57]Talavera G, Castresana J: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007, 56(4):564-577.
  • [58]Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25(15):1972-1973.
  • [59]Emanuelsson O, Brunak S, von Heijne G, Nielsen H: Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2007, 2(4):953-971.
  • [60]Claros MG, Vincens P: Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem/FEBS 1996, 241(3):779-786.
  • [61]Odronitz F, Pillmann H, Keller O, Waack S, Kollmar M: WebScipio: an online tool for the determination of gene structures using protein sequences. BMC Genomics 2008, 9:422.
  • [62]Kent WJ: BLAT–-The BLAST-Like Alignment Tool. Genome Res 2002, 12(4):656-664.
  • [63]Abascal F, Zardoya R, Telford MJ: TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res 2010, 38(Web Server issue):W7-W13.
  • [64]Felsenstein J: Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol 1996, 266:418-427.
  • [65]Rogozin IB, Babenko VN, Wolf YI, Koonin EV: Dollo parsimony and reconstruction of genome evolution. In Parsimony, Phylogeny, and Genomics. Edited by Albert VA. Oxford University Press, Oxford; 2005:190-200.
  • [66]Yutin N, Makarova KS, Mekhedov SL, Wolf YI, Koonin EV: The deep archaeal roots of eukaryotes. Mol Biol Evol 2008, 25(8):1619-1630.
  • [67]Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59(3):307-321.
  • [68]Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics (Oxford, England) 2005, 21(9):2104-2105.
  • [69]Takano H, Abe T, Sakurai R, Moriyama Y, Miyazawa Y, Nozaki H, Kawano S, Sasaki N, Kuroiwa T: The complete DNA sequence of the mitochondrial genome of Physarum polycephalum. Mol Gen Genet 2001, 264(5):539-545.
  • [70]Cermakian N, Ikeda TM, Cedergren R, Gray MW: Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage. Nucleic Acids Res 1996, 24(4):648-654.
  • [71]Bilewitch JP, Degnan SM: A unique horizontal gene transfer event has provided the octocoral mitochondrial genome with an active mismatch repair gene that has potential for an unusual self-contained function. BMC Evol Biol 2011, 11:228.
  • [72]Sánchez Puerta MV, Bachvaroff TR, Delwiche CF: The complete mitochondrial genome sequence of the haptophyte Emiliania huxleyi and its relation to heterokonts. DNA Res: Int J Rapid Publ Rep Gene Genomes 2004, 11(1):1-10.
  • [73]Gawryluk RM, Chisholm KA, Pinto DM, Gray MW: Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants. J Proteomics 2014, 109C:400-416.
  • [74]Tu Q, Cameron RA, Worley KC, Gibbs RA, Davidson EH: Gene structure in the sea urchin Strongylocentrotus purpuratus based on transcriptome analysis. Genome Res 2012, 22(10):2079-2087.
  • [75]Smits P, Smeitink JA, van den Heuvel LP, Huynen MA, Ettema TJ: Reconstructing the evolution of the mitochondrial ribosomal proteome. Nucleic Acids Res 2007, 35(14):4686-4703.
  • [76]Pietromonaco SF, Hessler RA, O’Brien TW: Evolution of proteins in mammalian cytoplasmic and mitochondrial ribosomes. J Mol Evol 1986, 24(1–2):110-117.
  • [77]Bonen L, Calixte S: Comparative analysis of bacterial-origin genes for plant mitochondrial ribosomal proteins. Mol Biol Evol 2006, 23(3):701-712.
  • [78]Liu S-L, Zhuang Y, Zhang P, Adams KL: Comparative analysis of structural diversity and sequence evolution in plant mitochondrial genes transferred to the nucleus. Mol Biol Evol 2009, 26(4):875-891.
  • [79]Xi Z, Wang Y, Bradley RK, Sugumaran M, Marx CJ, Rest JS, Davis CC: Massive mitochondrial gene transfer in a parasitic flowering plant clade. PLoS Genet 2013, 9(2):e1003265.
  • [80]Won H, Renner SS: Horizontal gene transfer from flowering plants to Gnetum. Proc Natl Acad Sci U S A 2003, 100(19):10824-10829.
  • [81]Bergthorsson U, Adams KL, Thomason B, Palmer JD: Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 2003, 424(6945):197-201.
  • [82]Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD: Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci U S A 2004, 101(51):17747-17752.
  • [83]Richardson AO, Palmer JD: Horizontal gene transfer in plants. J Exp Bot 2007, 58(1):1-9.
  • [84]Sanchez-Puerta MV, Cho Y, Mower JP, Alverson AJ, Palmer JD: Frequent, phylogenetically local horizontal transfer of the cox1 group I Intron in flowering plant mitochondria. Mol Biol Evol 2008, 25(8):1762-1777.
  • [85]Bock R: The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci 2010, 15(1):11-22.
  • [86]Mower JP, Stefanovic S, Hao W, Gummow JS, Jain K, Ahmed D, Palmer JD: Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes. BMC Biol 2010, 8:150.
  • [87]Davis CC, Wurdack KJ: Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 2004, 305(5684):676-678.
  • [88]Mower JP, Stefanovic S, Young GJ, Palmer JD: Plant genetics: gene transfer from parasitic to host plants. Nature 2004, 432(7014):165-166.
  • [89]Nickrent DL, Blarer A, Qiu YL, Vidal-Russell R, Anderson FE: Phylogenetic inference in Rafflesiales: the influence of rate heterogeneity and horizontal gene transfer. BMC Evol Biol 2004, 4:40.
  • [90]Kleine T, Maier UG, Leister D: DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annu Rev Plant Biol 2009, 60:115-138.
  • [91]Derelle R, Lang BF: Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol Biol Evol 2012, 29(4):1277-1289.
  • [92]Felsenstein J: Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 1978, 27(4):401-410.
  • [93]Philippe H, Laurent J: How good are deep phylogenetic trees? Curr Opin Genet Dev 1998, 8(6):616-623.
  • [94]Stefanovic S, Rice DW, Palmer JD: Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots? BMC Evol Biol 2004, 4:35.
  • [95]Philippe H, Delsuc F, Brinkmann H, Lartillot N: Phylogenomics. Annu Rev Ecol Evol Syst 2005, 36(1):541-562.
  • [96]Rogozin IB, Basu MK, Csuros M, Koonin EV: Analysis of rare genomic changes does not support the unikont-bikont phylogeny and suggests cyanobacterial symbiosis as the point of primary radiation of eukaryotes. Genome Biol Evol 2009, 1:99-113.
  • [97]Csurös M, Rogozin IB, Koonin EV: A detailed history of intron-rich eukaryotic ancestors inferred from a global survey of 100 complete genomes. PLoS Comput Biol 2011, 7(9):e1002150.
  • [98]Basu MK, Rogozin IB, Deusch O, Dagan T, Martin W, Koonin EV: Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues. Mol Biol Evol 2008, 25(1):111-119.
  • [99]Ahmadinejad N, Dagan T, Gruenheit N, Martin W, Gabaldón T: Evolution of spliceosomal introns following endosymbiotic gene transfer. BMC Evol Biol 2010, 10:57.
  • [100]Lynch M: Intron evolution as a population-genetic process. Proc Natl Acad Sci U S A 2002, 99(9):6118-6123.
  • [101]Ruvinsky A, Ward W: A gradient in the distribution of introns in eukaryotic genes. J Mol Evol 2006, 63(1):136-141.
  • [102]Rogozin IB, Wolf YI, Sorokin AV, Mirkin BG, Koonin EV: Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol 2003, 13(17):1512-1517.
  • [103]Nguyen HD, Yoshihama M, Kenmochi N: New maximum likelihood estimators for eukaryotic intron evolution. PLoS Comput Biol 2005, 1(7):e79.
  • [104]Carmel L, Wolf YI, Rogozin IB, Koonin EV: Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Res 2007, 17(7):1034-1044.
  • [105]Csurös M, Holey JA, Rogozin IB: In search of lost introns. Bioinformatics (Oxford, England) 2007, 23(13):i87-i96.
  • [106]Sverdlov AV, Rogozin IB, Babenko VN, Koonin EV: Conservation versus parallel gains in intron evolution. Nucleic Acids Res 2005, 33(6):1741-1748.
  • [107]Carmel L, Rogozin IB, Wolf YI, Koonin EV: Patterns of intron gain and conservation in eukaryotic genes. BMC Evol Biol 2007, 7:192.
  • [108]Gabaldon T, Huynen MA: Shaping the mitochondrial proteome. Biochim Biophys Acta 2004, 1659(2–3):212-220.
  • [109]Gabaldon T, Huynen MA: Lineage-specific gene loss following mitochondrial endosymbiosis and its potential for function prediction in eukaryotes. Bioinformatics 2005, 21(Suppl 2):ii144-ii150.
  • [110]Maier UG, Zauner S, Woehle C, Bolte K, Hempel F, Allen JF, Martin WF: Massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes. Genome Biol Evol 2013, 5(12):2318-2329.
  文献评价指标  
  下载次数:36次 浏览次数:22次