期刊论文详细信息
BMC Structural Biology
Exploring the binding of BACE-1 inhibitors using comparative binding energy analysis (COMBINE)
Li-Hua Zhou1  Sheng-Ping Chen2  Xiao Cheng1  Rao Fu1  Shu Liu1 
[1] Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China;Guangdong Province Key Laboratory of Functional Molecules in Oceanic Microorganism, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People’s Republic of China
关键词: COMBINE;    3D-QSAR;    Superimposition;    BACE-1 Inhibitors;   
Others  :  1091968
DOI  :  10.1186/1472-6807-12-21
 received in 2011-12-24, accepted in 2012-08-03,  发布年份 2012
PDF
【 摘 要 】

Background

The inhibition of the activity of β-secretase (BACE-1) is a potentially important approach for the treatment of Alzheimer disease. To explore the mechanism of inhibition, we describe the use of 46 X-ray crystallographic BACE-1/inhibitor complexes to derive quantitative structure-activity relationship (QSAR) models. The inhibitors were aligned by superimposing 46 X-ray crystallographic BACE-1/inhibitor complexes, and gCOMBINE software was used to perform COMparative BINding Energy (COMBINE) analysis on these 46 minimized BACE-1/inhibitor complexes. The major advantage of the COMBINE analysis is that it can quantitatively extract key residues involved in binding the ligand and identify the nature of the interactions between the ligand and receptor.

Results

By considering the contributions of the protein residues to the electrostatic and van der Waals intermolecular interaction energies, two predictive and robust COMBINE models were developed: (i) the 3-PC distance-dependent dielectric constant model (built from a single X-ray crystal structure) with a q2 value of 0.74 and an SDEC value of 0.521; and (ii) the 5-PC sigmoidal electrostatic model (built from the actual complexes present in the Brookhaven Protein Data Bank) with a q2 value of 0.79 and an SDEC value of 0.41.

Conclusions

These QSAR models and the information describing the inhibition provide useful insights into the design of novel inhibitors via the optimization of the interactions between ligands and those key residues of BACE-1.

【 授权许可】

   
2012 Liu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128175453132.pdf 4225KB PDF download
Figure 7. 47KB Image download
Figure 6. 82KB Image download
Figure 5. 21KB Image download
Figure 4. 30KB Image download
Figure 3. 20KB Image download
Figure 2. 22KB Image download
Figure 1. 91KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Fagan AM, Shaw LM, Xiong C, Vanderstichele H, Mintun MA, Trojanowski JQ, Coart E, Morris JC, Holtzman DM: Comparison of analytical platforms for cerebrospinal fluid measures of beta-amyloid 1–42, total tau, and p-tau181 for identifying Alzheimer disease amyloid plaque pathology. Arch Neurol 2011, 68(9):1137-1144.
  • [2]Liang B, Duan BY, Zhou XP, Gong JX, Luo ZG: Calpain activation promotes BACE1 expression, amyloid precursor protein processing, and amyloid plaque formation in a transgenic mouse model of Alzheimer disease. J Biol Chem 2010, 285(36):27737-27744.
  • [3]Kuzyk A, Kastyak M, Agrawal V, Gallant M, Sivakumar G, Rak M, Del Bigio MR, Westaway D, Julian R, Gough KM: Association among amyloid plaque, lipid, and creatine in hippocampus of TgCRND8 mouse model for Alzheimer disease. J Biol Chem 2010, 285(41):31202-31207.
  • [4]Hemming ML, Patterson M, Reske-Nielsen C, Lin L, Isacson O, Selkoe DJ: Reducing amyloid plaque burden via ex vivo gene delivery of an Abeta-degrading protease: a novel therapeutic approach to Alzheimer disease. PLoS Med 2007, 4(8):e262.
  • [5]Zhi P: Chia C. Intracellular trafficking of the beta-secretase and processing of amyloid precursor protein. IUBMB Life, Gleeson PA; 2011.
  • [6]Zhou L, Brouwers N, Benilova I, Vandersteen A, Mercken M, Van Laere K, Van Damme P, Demedts D, Van Leuven F, Sleegers K, et al.: Amyloid precursor protein mutation E682K at the alternative beta-secretase cleavage beta'-site increases Abeta generation. EMBO Mol Med 2011, 3(5):291-302.
  • [7]Belyaev ND, Kellett KA, Beckett C, Makova NZ, Revett TJ, Nalivaeva NN, Hooper NM, Turner AJ: The transcriptionally active amyloid precursor protein (APP) intracellular domain is preferentially produced from the 695 isoform of APP in a {beta}-secretase-dependent pathway. J Biol Chem 2010, 285(53):41443-41454.
  • [8]Yamakawa H, Yagishita S, Futai E, Ishiura S: Beta-Secretase inhibitor potency is decreased by aberrant beta-cleavage location of the "Swedish mutant" amyloid precursor protein. J Biol Chem 2010, 285(3):1634-1642.
  • [9]Vassar R, Kandalepas PC: The beta-secretase enzyme BACE1 as a therapeutic target for Alzheimer's disease. Alzheimers Res Ther 2011, 3(3):20. BioMed Central Full Text
  • [10]Mancini F, De Simone A, Andrisano V: Beta-secretase as a target for Alzheimer's disease drug discovery: an overview of in vitro methods for characterization of inhibitors. Anal Bioanal Chem 2011, 400(7):1979-1996.
  • [11]Ghosh AK, Gemma S, Tang J: Beta-secretase as a therapeutic target for Alzheimer's disease. Neurotherapeutics 2008, 5(3):399-408.
  • [12]Vassar R: Beta-secretase (BACE) as a drug target for Alzheimer's disease. Adv Drug Deliv Rev 2002, 54(12):1589-1602.
  • [13]Rossner S, Apelt J, Schliebs R, Perez-Polo JR, Bigl V: Neuronal and glial beta-secretase (BACE) protein expression in transgenic Tg2576 mice with amyloid plaque pathology. J Neurosci Res 2001, 64(5):437-446.
  • [14]Al-Nadaf A, Abu Sheikha G, Taha MO: Elaborate ligand-based pharmacophore exploration and QSAR analysis guide the synthesis of novel pyridinium-based potent beta-secretase inhibitory leads. Bioorg Med Chem 2010, 18(9):3088-3115.
  • [15]Wei HY, Chen GJ, Chen CL, Lin TH: Developing consensus 3D-QSAR and pharmacophore models for several beta-secretase, farnesyl transferase and histone deacetylase inhibitors. J Mol Model 2012, 18(12):675-692.
  • [16]Nino H, Garcia-Pintos I, Rodriguez-Borges JE, Escobar-Cubiella M, Garcia-Mera X, Prado-Prado F: Review of Synthesis. Biological Assay and QSAR Studies of beta-Secretase Inhibitors, Curr Comput Aided Drug Des; 2011.
  • [17]Zuo Z, Luo X, Zhu W, Shen J, Shen X, Jiang H, Chen K: Molecular docking and 3D-QSAR studies on the binding mechanism of statine-based peptidomimetics with beta-secretase. Bioorg Med Chem 2005, 13(6):2121-2131.
  • [18]Xu W, Chen G, Liew OW, Zuo Z, Jiang H, Zhu W: Novel non-peptide beta-secretase inhibitors derived from structure-based virtual screening and bioassay. Bioorg Med Chem Lett 2009, 19(12):3188-3192.
  • [19]Polgar T, Magyar C, Simon I, Keseru GM: Impact of ligand protonation on virtual screening against beta-secretase (BACE1). J Chem Inf Model 2007, 47(6):2366-2373.
  • [20]Polgar T, Keseru GM: Virtual screening for beta-secretase (BACE1) inhibitors reveals the importance of protonation states at Asp32 and Asp228. J Med Chem 2005, 48(11):3749-3755.
  • [21]Huang D, Luthi U, Kolb P, Cecchini M, Barberis A, Caflisch A: In silico discovery of beta-secretase inhibitors. J Am Chem Soc 2006, 128(16):5436-5443.
  • [22]Huang D, Luthi U, Kolb P, Edler K, Cecchini M, Audetat S, Barberis A, Caflisch A: Discovery of cell-permeable non-peptide inhibitors of beta-secretase by high-throughput docking and continuum electrostatics calculations. J Med Chem 2005, 48(16):5108-5111.
  • [23]Mishra S, Caflisch A: Dynamics in the Active Site of beta-Secretase: A Network Analysis of Atomistic Simulations. Biochemistry 2011, 50(43):9328-9339.
  • [24]Gorfe AA, Caflisch A: Functional plasticity in the substrate binding site of beta-secretase. Structure 2005, 13(10):1487-1498.
  • [25]Xiong B, Huang XQ, Shen LL, Shen JH, Luo XM, Shen X, Jiang HL, Chen KX: Conformational flexibility of beta-secretase: molecular dynamics simulation and essential dynamics analysis. Acta Pharmacol Sin 2004, 25(6):705-713.
  • [26]Park H, Lee S: Determination of the active site protonation state of beta-secretase from molecular dynamics simulation and docking experiment: implications for structure-based inhibitor design. J Am Chem Soc 2003, 125(52):16416-16422.
  • [27]Coburn CA, Stachel SJ, Li YM, Rush DM, Steele TG, Chen-Dodson E, Holloway MK, Xu M, Huang Q, Lai MT, et al.: Identification of a small molecule nonpeptide active site beta-secretase inhibitor that displays a nontraditional binding mode for aspartyl proteases. J Med Chem 2004, 47(25):6117-6119.
  • [28]Murray CW, Callaghan O, Chessari G, Cleasby A, Congreve M, Frederickson M, Hartshorn MJ, McMenamin R, Patel S, Wallis N: Application of fragment screening by X-ray crystallography to beta-secretase. J Med Chem 2007, 50(6):1116-1123.
  • [29]Baxter EW, Conway KA, Kennis L, Bischoff F, Mercken MH, Winter HL, Reynolds CH, Tounge BA, Luo C, Scott MK, et al.: 2-Amino-3,4-dihydroquinazolines as inhibitors of BACE-1 (beta-site APP cleaving enzyme): Use of structure based design to convert a micromolar hit into a nanomolar lead. J Med Chem 2007, 50(18):4261-4264.
  • [30]Ortiz AR, Pisabarro MT, Gago F, Wade RC: Prediction of drug binding affinities by comparative binding energy analysis. J Med Chem 1995, 38(14):2681-2691.
  • [31]Murcia M, Morreale A, Ortiz AR: Comparative binding energy analysis considering multiple receptors: a step toward 3D-QSAR models for multiple targets. J Med Chem 2006, 49(21):6241-6253.
  • [32]Kmunicek J, Luengo S, Gago F, Ortiz AR, Wade RC, Damborsky J: Comparative binding energy analysis of the substrate specificity of haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. Biochemistry 2001, 40(30):8905-8917.
  • [33]Perez C, Pastor M, Ortiz AR, Gago F: Comparative binding energy analysis of HIV-1 protease inhibitors: incorporation of solvent effects and validation as a powerful tool in receptor-based drug design. J Med Chem 1998, 41(6):836-852.
  • [34]Henrich S, Feierberg I, Wang T, Blomberg N, Wade RC: Comparative binding energy analysis for binding affinity and target selectivity prediction. Proteins 2010, 78(1):135-153.
  • [35]Wang T, Wade RC: Comparative binding energy (COMBINE) analysis of influenza neuraminidase-inhibitor complexes. J Med Chem 2001, 44(6):961-971.
  • [36]Wang T, Wade RC: Comparative binding energy (COMBINE) analysis of OppA-peptide complexes to relate structure to binding thermodynamics. J Med Chem 2002, 45(22):4828-4837.
  • [37]Murcia M, Ortiz AR: Virtual screening with flexible docking and COMBINE-based models. Application to a series of factor Xa inhibitors. J Med Chem 2004, 47(4):805-820.
  • [38]Gil-Redondo R, Klett J, Gago F, Morreale A: gCOMBINE: A graphical user interface to perform structure-based comparative binding energy (COMBINE) analysis on a set of ligand-receptor complexes. Proteins 2010, 78(1):162-172.
  • [39]Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, et al.: Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 2000, 33(12):889-897.
  • [40]Wang W, Wang J, Kollman PA: What determines the van der Waals coefficient beta in the LIE (linear interaction energy) method to estimate binding free energies using molecular dynamics simulations? Proteins 1999, 34(3):395-402.
  • [41]Bordas B, Komives T, Lopata A: Ligand-based computer-aided pesticide design. A review of applications of the CoMFA and CoMSIA methodologies. Pest Manag Sci 2003, 59(4):393-400.
  • [42]Protein Data Bank website http://www.rcsb.org/pdb/home/home.do
  • [43]Liu S, Zhou LH, Wang HQ, Yao ZB: Superimposing the 27 crystal protein/inhibitor complexes of beta-secretase to calculate the binding affinities by the linear interaction energy method. Bioorg Med Chem Lett 2010, 20(22):6533-6537.
  • [44]Polgar T, Keseru GM: Ensemble docking into flexible active sites. Critical evaluation of FlexE against JNK-3 and beta-secretase. J Chem Inf Model 2006, 46(4):1795-1805.
  • [45]DS Viewer Version. Accelrys, Inc, San Diego, CA, USA; Available: http://www.accelrys.com
  • [46]Andreeva NS, Rumsh LD: Analysis of crystal structures of aspartic proteinases: on the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes. Protein Sci 2001, 10(12):2439-2450.
  • [47]Hyland LJ, Tomaszek TA Jr, Roberts GD, Carr SA, Magaard VW, Bryan HL, Fakhoury SA, Moore ML, Minnich MD, Culp JS, et al.: Human immunodeficiency virus-1 protease. 1. Initial velocity studies and kinetic characterization of reaction intermediates by 18O isotope exchange. Biochemistry 1991, 30(34):8441-8453.
  • [48]Rajamani R, Reynolds CH: Modeling the protonation states of the catalytic aspartates in beta-secretase. J Med Chem 2004, 47(21):5159-5166.
  • [49]ten Brink T, Exner TE: Influence of protonation, tautomeric, and stereoisomeric states on protein-ligand docking results. J Chem Inf Model 2009, 49(6):1535-1546.
  • [50]Mehler EL, Solmajer T: Electrostatic effects in proteins: comparison of dielectric and charge models. Protein Eng 1991, 4(8):903-910.
  • [51]Goodford PJ: A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 1985, 28(7):849-857.
  • [52]Hong L, Koelsch G, Lin X, Wu S, Terzyan S, Ghosh AK, Zhang XC, Tang J: Structure of the protease domain of memapsin 2 (beta-secretase) complexed with inhibitor. Science 2000, 290(5489):150-153.
  • [53]Hong L, Turner RT 3rd, Koelsch G, Shin D, Ghosh AK, Tang J: Crystal structure of memapsin 2 (beta-secretase) in complex with an inhibitor OM00-3. Biochemistry 2002, 41(36):10963-10967.
  • [54]Rodriguez-Barrios F, Gago F: Chemometrical identification of mutations in HIV-1 reverse transcriptase conferring resistance or enhanced sensitivity to arylsulfonylbenzonitriles. J Am Chem Soc 2004, 126(9):2718-2719.
  • [55]Martin-Santamaria S, Munoz-Muriedas J, Luque FJ, Gago F: Modulation of binding strength in several classes of active site inhibitors of acetylcholinesterase studied by comparative binding energy analysis. J Med Chem 2004, 47(18):4471-4482.
  • [56]Back M, Nyhlen J, Kvarnstrom I, Appelgren S, Borkakoti N, Jansson K, Lindberg J, Nystrom S, Hallberg A, Rosenquist S, et al.: Design, synthesis and SAR of potent statine-based BACE-1 inhibitors: exploration of P1 phenoxy and benzyloxy residues. Bioorg Med Chem 2008, 16(21):9471-9486.
  • [57]Charrier N, Clarke B, Cutler L, Demont E, Dingwall C, Dunsdon R, East P, Hawkins J, Howes C, Hussain I, et al.: Second generation of hydroxyethylamine BACE-1 inhibitors: optimizing potency and oral bioavailability. J Med Chem 2008, 51(11):3313-3317.
  • [58]Charrier N, Clarke B, Cutler L, Demont E, Dingwall C, Dunsdon R, Hawkins J, Howes C, Hubbard J, Hussain I, et al.: Second generation of BACE-1 inhibitors. Part 1: The need for improved pharmacokinetics. Bioorg Med Chem 2009, 19(13):3664-3668.
  • [59]Kortum SW, Benson TE, Bienkowski MJ, Emmons TL, Prince DB, Paddock DJ, Tomasselli AG, Moon JB, LaBorde A, TenBrink RE: Potent and selective isophthalamide S2 hydroxyethylamine inhibitors of BACE1. Bioorg Med Chem Lett 2007, 17(12):3378-3383.
  • [60]Patel S, Vuillard L, Cleasby A, Murray CW, Yon J: Apo and inhibitor complex structures of BACE (beta-secretase). J Mol Biol 2004, 343(2):407-416.
  • [61]Clarke B, Demont E, Dingwall C, Dunsdon R, Faller A, Hawkins J, Hussain I, MacPherson D, Maile G, Matico R, et al.: BACE-1 inhibitors part 2: identification of hydroxy ethylamines (HEAs) with reduced peptidic character. Bioorg Med Chem Lett 2008, 18(3):1017-1021.
  • [62]Maillard MC, Hom RK, Benson TE, Moon JB, Mamo S, Bienkowski M, Tomasselli AG, Woods DD, Prince DB, Paddock DJ, et al.: Design, synthesis, and crystal structure of hydroxyethyl secondary amine-based peptidomimetic inhibitors of human beta-secretase. J Med Chem 2007, 50(4):776-781.
  • [63]Stachel SJ, Coburn CA, Steele TG, Crouthamel MC, Pietrak BL, Lai MT, Holloway MK, Munshi SK, Graham SL, Vacca JP: Conformationally biased P3 amide replacements of beta-secretase inhibitors. Bioorg Med Chem Lett 2006, 16(3):641-644.
  • [64]Ghosh AK, Kumaragurubaran N, Hong L, Kulkarni SS, Xu X, Chang W, Weerasena V, Turner R, Koelsch G, Bilcer G, et al.: Design, synthesis, and X-ray structure of potent memapsin 2 (beta-secretase) inhibitors with isophthalamide derivatives as the P2-P3-ligands. J Med Chem 2007, 50(10):2399-2407.
  • [65]Yang W, Lu W, Lu Y, Zhong M, Sun J, Thomas AE, Wilkinson JM, Fucini RV, Lam M, Randal M, et al.: Aminoethylenes: a tetrahedral intermediate isostere yielding potent inhibitors of the aspartyl protease BACE-1. J Med Chem 2006, 49(3):839-842.
  • [66]Ghosh AK, Devasamudram T, Hong L, DeZutter C, Xu X, Weerasena V, Koelsch G, Bilcer G, Tang J: Structure-based design of cycloamide-urethane-derived novel inhibitors of human brain memapsin 2 (beta-secretase). Bioorg Med Chem Lett 2005, 15(1):15-20.
  • [67]Machauer R, Laumen K, Veenstra S, Rondeau JM, Tintelnot-Blomley M, Betschart C, Jaton AL, Desrayaud S, Staufenbiel M, Rabe S, et al.: Macrocyclic peptidomimetic beta-secretase (BACE-1) inhibitors with activity in vivo. Bioorg Med Chem Lett 2009, 19(5):1366-1370.
  • [68]Hanessian S, Yang G, Rondeau JM, Neumann U, Betschart C, Tintelnot-Blomley M: Structure-based design and synthesis of macroheterocyclic peptidomimetic inhibitors of the aspartic protease beta-site amyloid precursor protein cleaving enzyme (BACE). J Med Chem 2006, 49(15):4544-4567.
  • [69]Lindsley SR, Moore KP, Rajapakse HA, Selnick HG, Young MB, Zhu H, Munshi S, Kuo L, McGaughey GB, Colussi D, et al.: Design, synthesis, and SAR of macrocyclic tertiary carbinamine BACE-1 inhibitors. Bioorg Med Chem Lett 2007, 17(14):4057-4061.
  • [70]Stauffer SR, Stanton MG, Gregro AR, Steinbeiser MA, Shaffer JR, Nantermet PG, Barrow JC, Rittle KE, Collusi D, Espeseth AS, et al.: Discovery and SAR of isonicotinamide BACE-1 inhibitors that bind beta-secretase in a N-terminal 10s-loop down conformation. Bioorg Med Chem Lett 2007, 17(6):1788-1792.
  • [71]Rajapakse HA, Nantermet PG, Selnick HG, Munshi S, McGaughey GB, Lindsley SR, Young MB, Lai MT, Espeseth AS, Shi XP, et al.: Discovery of oxadiazoyl tertiary carbinamine inhibitors of beta-secretase (BACE-1). J Med Chem 2006, 49(25):7270-7273.
  • [72]Barrow JC, Stauffer SR, Rittle KE, Ngo PL, Yang Z, Selnick HG, Graham SL, Munshi S, McGaughey GB, Holloway MK, et al.: Discovery and X-ray crystallographic analysis of a spiropiperidine iminohydantoin inhibitor of beta-secretase. J Med Chem 2008, 51(20):6259-6262.
  • [73]Cumming JN, Le TX, Babu S, Carroll C, Chen X, Favreau L, Gaspari P, Guo T, Hobbs DW, Huang Y, et al.: Rational design of novel, potent piperazinone and imidazolidinone BACE1 inhibitors. Bioorg Med Chem Lett 2008, 18(11):3236-3241.
  • [74]Cole DC, Stock JR, Chopra R, Cowling R, Ellingboe JW, Fan KY, Harrison BL, Hu Y, Jacobsen S, Jennings LD, et al.: Acylguanidine inhibitors of beta-secretase: optimization of the pyrrole ring substituents extending into the S1 and S3 substrate binding pockets. Bioorg Med Chem Lett 2008, 18(3):1063-1066.
  • [75]Coburn CA, Stachel SJ, Jones KG, Steele TG, Rush DM, DiMuzio J, Pietrak BL, Lai MT, Huang Q, Lineberger J, et al.: BACE-1 inhibition by a series of psi[CH2NH] reduced amide isosteres. Bioorg Med Chem Lett 2006, 16(14):3635-3638.
  • [76]Iserloh U, Wu Y, Cumming JN, Pan J, Wang LY, Stamford AW, Kennedy ME, Kuvelkar R, Chen X, Parker EM, et al.: Potent pyrrolidine- and piperidine-based BACE-1 inhibitors. Bioorg Med Chem Lett 2008, 18(1):414-417.
  • [77]Sybyl 8.1 Tripos Inc. 1699, South Hanley Road St. Louis, Missouri, 63144, USA;
  • [78]Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 2007, 35(Database issue):D198-201.
  • [79]Cheng HC: The influence of cooperativity on the determination of dissociation constants: examination of the Cheng-Prusoff equation, the Scatchard analysis, the Schild analysis and related power equations. Pharmacol Res 2004, 50(1):21-40.
  • [80]Cheng HC: The power issue: determination of KB or Ki from IC50. A closer look at the Cheng-Prusoff equation, the Schild plot and related power equations. J Pharmacol Toxicol Methods 2001, 46(2):61-71.
  • [81]Toulokhonova L, Metzler WJ, Witmer MR, Copeland RA, Marcinkeviciene J: Kinetic studies on beta-site amyloid precursor protein-cleaving enzyme (BACE). Confirmation of an iso mechanism. J Biol Chem 2003, 278(7):4582-4589.
  • [82]Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ: The Amber biomolecular simulation programs. J Comput Chem 2005, 26(16):1668-1688.
  • [83]Jain AN: Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput Aided Mol Des 2007, 21(5):281-306.
  • [84]Jain AN: Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 2003, 46(4):499-511.
  • [85]Ponder JW, Case DA: Force fields for protein simulations. Adv Protein Chem 2003, 66:27-85.
  • [86]Stewart JJ: MOPAC: a semiempirical molecular orbital program. J Comput Aided Mol Des 1990, 4(1):1-105.
  • [87]Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA: Development and testing of a general amber force field. J Comput Chem 2004, 25(9):1157-1174.
  • [88]Szarecka A, Meirovitch H: Optimization of the GB/SA solvation model for predicting the structure of surface loops in proteins. J Phys Chem B 2006, 110(6):2869-2880.
  文献评价指标  
  下载次数:47次 浏览次数:11次