期刊论文详细信息
BMC Developmental Biology
The pattern of congenital heart defects arising from reduced Tbx5 expression is altered in a Down syndrome mouse model
Roger H. Reeves4  Sally A. Camper3  Ivan P. Moskowitz2  Huiqing Li1  Jeffrey D. Steimle2  Peter Gergics3  Renita C. Polk4 
[1] Department of Physiology at Johns Hopkins, Biophysics 201, 725 N. Wolfe St., Baltimore 21205, MD, USA;Departments of Pediatrics, Pathology and Human Genetics, University of Chicago, Chicago, IL, USA;Department of Human Genetics, School of Medicine, University of Michigan, Ann Arbor, MI, USA;McKusick Nathans Institute for Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
关键词: Trisomy;    Down syndrome;    Congenital heart defect;    Heart development;   
Others  :  1224003
DOI  :  10.1186/s12861-015-0080-y
 received in 2015-02-06, accepted in 2015-07-07,  发布年份 2015
【 摘 要 】

Background

Nearly half of all individuals with Down Syndrome (DS) have some type of congenital heart defect (CHD), suggesting that DS sensitizes to CHD but does not cause it. We used a common mouse model of DS, the Ts65Dn mouse, to study the contribution of Tbx5, a known modifier of CHD, to heart defects on a trisomic backgroun. Mice that were heterozygous for a Tbx5 null allele were crossed with Ts65Dn mice. Thoraxes of progeny were fixed in 10% formalin, embedded in paraffin, and sectioned for analysis of CHD. Gene expression in embryonic hearts was examined by quantitative PCR and in situ hybridization. A TBX5 DNA binding site was verified by luciferase assays.

Methods

Mice that were heterozygous for a Tbx5 null allele were crossed with Ts65Dn mice. Thoraxes of progeny were fixed in 10 % formalin, embedded in paraffin, and sectioned for analysis of CHD. Gene expression in embryonic hearts was examined by quantitative PCR and in situ hybridization. A TBX5 DNA binding site was verified by luciferase assays.

Results

We crossed mice that were heterozygous for a Tbx5 null allele with Ts65Dn mice. Mice that were trisomic and carried the Tbx5 mutation (Ts65Dn;Tbx5 +/− ) had a significantly increased incidence of overriding aorta compared to their euploid littermates. Ts65Dn;Tbx5 +/− mice also showed reduced expression of Pitx2, a molecular marker for the left atrium. Transcript levels of the trisomic Adamts1 gene were decreased in Tbx5 +/− mice compared to their euploid littermates. Evidence of a valid binding site for TBX5 upstream of the trisomic Adamts1 locus was also shown.

Conclusion

Haploinsufficiency of Tbx5 and trisomy affects alignment of the aorta and this effect may stem from deviations from normal left-right patterning in the heart. We have unveiled a previously unknown interaction between the Tbx5 gene and trisomy, suggesting a connection between Tbx5 and trisomic genes important during heart development.

【 授权许可】

   
2015 Polk et al.

附件列表
Files Size Format View
Fig. 4. 112KB Image download
Fig. 3. 50KB Image download
Fig. 2. 154KB Image download
Fig. 1. 22KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K et al.. Heart disease and stroke statistics - 2007 update - a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2007; 115(5):E69-E171.
  • [2]Freeman SB, Taft LF, Dooley KJ, Allran K, Sherman SL, Hassold TJ et al.. Population-based study of congenital heart defects in Down syndrome. Am J Med Genet. 1998; 80(3):213-7.
  • [3]Ferencz C, Neill CA, Boughman JA, Rubin JD, Brenner JI, Perry LW. Congenital cardiovascular malformations associated with chromosome abnormalities: an epidemiologic study. J Pediatr. 1989; 114(1):79-86.
  • [4]Stoll C, Alembik Y, Dott B, Roth MP. Epidemiology of Down syndrome in 118,265 consecutive births. Am J Med Genet Suppl. 1990; 7:79-83.
  • [5]Khoury MJ, Erickson JD. Improved ascertainment of cardiovascular malformations in infants with Down’s syndrome, Atlanta, 1968 through 1989. Implications for the interpretation of increasing rates of cardiovascular malformations in surveillance systems. Am J Epidemiol. 1992; 136(12):1457-64.
  • [6]Wells GL, Barker SE, Finley SC, Colvin EV, Finley WH. Congenital heart disease in infants with Down’s syndrome. South Med J. 1994; 87(7):724-7.
  • [7]Pradat P. Epidemiology of major congenital heart defects in Sweden, 1981–1986. J Epidemiol Community Health. 1992; 46(3):211-5.
  • [8]Ackerman C, Locke AE, Feingold E, Reshey B, Espana K, Thusberg J et al.. An excess of deleterious variants in VEGF-a pathway genes in down-syndrome-associated atrioventricular septal defects. Am J Hum Genet. 2012; 91(4):646-59.
  • [9]Li H, Cherry S, Klinedinst D, DeLeon V, Redig J, Reshey B et al.. Genetic modifiers predisposing to congenital heart disease in the sensitized Down syndrome population. Circ Cardiovasc Genet. 2012; 5(3):301-8.
  • [10]Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J et al.. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997; 15(1):30-5.
  • [11]Li QY, Newbury-Ecob RA, Terrett JA, Wilson DI, Curtis AR, Yi CH et al.. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nature genetics. 1997; 15(1):21-29.
  • [12]Newbury-Ecob RA, Leanage R, Raeburn JA, Young ID. Holt-Oram syndrome: a clinical genetic study. J Med Genet. 1996; 33(4):300-7.
  • [13]Bruneau BG, Logan M, Davis N, Levi T, Tabin CJ, Seidman JG et al.. Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Developmental Biology. 1999; 211(1):100-8.
  • [14]Koshiba-Takeuchi K, Mori AD, Kaynak BL, Cebra-Thomas J, Sukonnik T, Georges RO et al.. Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature. 2009; 461(7260):95-8.
  • [15]Moore CS, Roper RJ. The power of comparative and developmental studies for mouse models of Down syndrome. Mammalian Genome. 2007; 18(6–7):431-43.
  • [16]Reeves RH, Irving NG, Moran TH, Wohn A, Kitt C, Sisodia SS et al.. A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat Genet. 1995; 11(2):177-84.
  • [17]Reinholdt L, Ding Y, Gilbert GJ, Czechanski A, Solzak JP, Roper RJ et al.. Molecular characterization of the translocation breakpoints in the Down syndrome mouse model Ts65Dn. Mamm. Genome. 2011; 22(11–12):685-691.
  • [18]Duchon A, Raveau M, Chevalier C, Nalesso V, Sharp AJ, Herault Y. Identification of the translocation breakpoints in the Ts65Dn and Ts1Cje mouse lines: relevance for modeling Down syndrome. Mamm Genome. 2011; 22(11–12):674-84.
  • [19]Williams AD, Mjaatvedt CH, Moore CS. Characterization of the cardiac phenotype in neonatal Ts65Dn mice. Dev Dyn. 2008; 237(2):426-35.
  • [20]Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S et al.. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell. 2001; 106(6):709-21.
  • [21]Mori AD, Zhu Y, Vahora I, Nieman B, Koshiba-Takeuchi K, Davidson L et al.. Tbx5-dependent rheostatic control of cardiac gene expression and morphogenesis. Developmental Biology. 2006; 297(2):566-86.
  • [22]Moore CS. Postnatal lethality and cardiac anomalies in the Ts65Dn Down syndrome mouse model. Mamm Genome. 2006; 17(10):1005-12.
  • [23]Roper RJ, St John HK, Philip J, Lawler A, Reeves RH. Perinatal loss of Ts65Dn Down syndrome mice. Genetics. 2006; 172(1):437-43.
  • [24]Starbuck JM, Dutka T, Ratliff TS, Reeves RH, Richtsmeier JT. Overlapping trisomies for human chromosome 21 orthologs produce similar effects on skull and brain morphology of Dp(16)1Yey and Ts65Dn mice. Am J Med Genet A. 2014; 164A(8):1981-90.
  • [25]He A, Kong SW, Ma Q, Pu WT. Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc Natl Acad Sci U S A. 2011; 108(14):5632-7.
  • [26]Schug J. Using TESS to predict transcription factor binding sites in DNA sequence. Curr Protoc Bioinformatics. 2008; Chapter 2:Unit 2 6.
  • [27]Ghosh TK, Packham EA, Bonser AJ, Robinson TE, Cross SJ, Brook JD. Characterization of the TBX5 binding site and analysis of mutations that cause Holt-Oram syndrome. Human molecular genetics. 2001; 10(18):1983-94.
  • [28]Ammirabile G, Tessari A, Pignataro V, Szumska D, Sutera Sardo F, Benes J et al.. Pitx2 confers left morphological, molecular and functional identity to the sinus venosus myocardium. Cardiovasc Res. 2012; 93(2):291-301.
  • [29]Cross SJ, Ching YH, Li QY, Armstrong-Buisseret L, Spranger S, Lyonnet S et al.. The mutation spectrum in Holt-Oram syndrome. J Med Genet. 2000; 37(10):785-7.
  • [30]Reamon-Buettner SM, Borlak J. TBX5 mutations in non-Holt-Oram syndrome (HOS) malformed hearts. Human mutation. 2004; 24(1):104-4.
  • [31]Neeb Z, Lajiness JD, Bolanis E, Conway SJ. Cardiac outflow tract anomalies. Wiley Interdiscip Rev Dev Biol. 2013; 2(4):499-530.
  • [32]Lu MF, Pressman C, Dyer R, Johnson RL, Martin JF. Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature. 1999; 401(6750):276-8.
  • [33]Gage PJ, Suh H, Camper SA. Dosage requirement of Pitx2 for development of multiple organs. Development. 1999; 126(20):4643-51.
  • [34]Franco D, Campione M. The role of Pitx2 during cardiac development. Linking left-right signaling and congenital heart diseases. Trends Cardiovasc Med. 2003; 13(4):157-63.
  • [35]Ai D, Liu W, Ma L, Dong F, Lu MF, Wang D et al.. Pitx2 regulates cardiac left-right asymmetry by patterning second cardiac lineage-derived myocardium. Dev Biol. 2006; 296(2):437-49.
  • [36]Lin CR, Kioussi C, O’Connell S, Briata P, Szeto D, Liu F et al.. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature. 1999; 401(6750):279-82.
  • [37]Kitamura K, Miura H, Miyagawa-Tomita S, Yanazawa M, Katoh-Fukui Y, Suzuki R et al.. Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra- and periocular mesoderm and right pulmonary isomerism. Development. 1999; 126(24):5749-58.
  • [38]Ryan AK, Blumberg B, Rodriguez-Esteban C, Yonei-Tamura S, Tamura K, Tsukui T et al.. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature. 1998; 394(6693):545-51.
  • [39]Campione M, Ros MA, Icardo JM, Piedra E, Christoffels VM, Schweickert A et al.. Pitx2 expression defines a left cardiac lineage of cells: evidence for atrial and ventricular molecular isomerism in the iv/iv mice. Dev Biol. 2001; 231(1):252-64.
  • [40]Liu C, Liu W, Lu MF, Brown NA, Martin JF. Regulation of left-right asymmetry by thresholds of Pitx2c activity. Development. 2001; 128(11):2039-48.
  • [41]Shiratori H, Yashiro K, Shen MM, Hamada H. Conserved regulation and role of Pitx2 in situs-specific morphogenesis of visceral organs. Development. 2006; 133(15):3015-25.
  • [42]Nowotschin S, Liao J, Gage PJ, Epstein JA, Campione M, Morrow BE. Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field. Development. 2006; 133(8):1565-73.
  • [43]Hilton T, Gross MK, Kioussi C. Pitx2-dependent occupancy by histone deacetylases is associated with T-box gene regulation in mammalian abdominal tissue. J Biol Chem. 2010; 285(15):11129-42.
  • [44]Currier DG, Polk RC, Reeves RH. A Sonic hedgehog (Shh) response deficit in trisomic cells may be a common denominator for multiple features of Down syndrome. Prog Brain Res. 2012; 197:223-36.
  • [45]Zhang XM, Ramalho-Santos M, McMahon AP. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node. Cell. 2001; 105(6):781-92.
  • [46]Logan M, Pagán-Westphal SM, Smith DM, Paganessi L, Tabin CJ. The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell. 1998; 94(3):307-17.
  • [47]Tsukui T, Capdevila J, Tamura K, Ruiz-Lozano P, Rodriguez-Esteban C, Yonei-Tamura S et al.. Multiple left-right asymmetry defects in Shh(−/−) mutant mice unveil a convergence of the shh and retinoic acid pathways in the control of Lefty-1. Proc Natl Acad Sci U S A. 1999; 96(20):11376-81.
  • [48]Hoffmann AD, Peterson MA, Friedland-Little JM, Anderson SA, Moskowitz IP. Sonic hedgehog is required in pulmonary endoderm for atrial septation. Development. 2009; 136(10):1761-1770.
  • [49]Kern CB, Twal WO, Mjaatvedt CH, Fairey SE, Toole BP, Iruela-Arispe ML et al.. Proteolytic cleavage of versican during cardiac cushion morphogenesis. Dev Dyn. 2006; 235(8):2238-47.
  • [50]Luque A, Carpizo DR, Iruela-Arispe ML. ADAMTS1/METH1 inhibits endothelial cell proliferation by direct binding and sequestration of VEGF165. J Biol Chem. 2003; 278(26):23656-65.
  • [51]Richardson L, Stevenson P, Venkataraman S, Yang Y, Burton N, Rao J et al.. EMAGE: electronic mouse atlas of gene expression. Methods Mol Biol. 2014; 1092:61-79.
  • [52]Kuhn RM, Karolchik D, Zweig AS, Trumbower H, Thomas DJ, Thakkapallayil A et al.. The UCSC genome browser database: update 2007. Nucleic Acids Res. 2007; 35(Database issue):D668-73.
  • [53]Reymond A, Marigo V, Yaylaoglu MB, Leoni A, Ucla C, Scamuffa N et al.. Human chromosome 21 gene expression atlas in the mouse. Nature. 2002; 420(6915):582-6.
  • [54]Smith CM, Finger JH, Hayamizu TF, McCright IJ, Xu J, Eppig JT, et al. GXD: a community resource of mouse Gene Expression Data. Mammalian Genome. 2015. doi:10.1007/s00335-015-9563-1
  • [55]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001; 25(4):402-8.
  • [56]Martin DM, Skidmore JM, Fox SE, Gage PJ, Camper SA. Pitx2 distinguishes subtypes of terminally differentiated neurons in the developing mouse neuroepithelium. Dev Biol. 2002; 252(1):84-99.
  文献评价指标  
  下载次数:24次 浏览次数:5次