期刊论文详细信息
BMC Genomics
Next-generation sequencing of small RNAs from inner ear sensory epithelium identifies microRNAs and defines regulatory pathways
Karen B Avraham2  Noam Shomron3  Lilach M Friedman2  Inbal Weiss1  Shaked Shivatzki2  Kathy Ushakov2  Ofer Isakov3  Anya Rudnicki2 
[1] Present address: Clalit Health Services, Migdal HaEmek Clinic, Tel Aviv, Israel;Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel;Department of Cell and Developmental Biology, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
关键词: MicroRNAs;    RNA-seq;    Sensory epithelia;    Inner ear;    Deafness;   
Others  :  1089768
DOI  :  10.1186/1471-2164-15-484
 received in 2014-03-09, accepted in 2014-06-13,  发布年份 2014
PDF
【 摘 要 】

Background

The mammalian inner ear contains sensory organs, the organ of Corti in the cochlea and cristae and maculae in the vestibule, with each comprised of patterned sensory epithelia that are responsible for hearing and balance. The development, cell fate, patterning, and innervation of both the sensory and nonsensory regions of the inner ear are governed by tight regulation involving, among others, transcription factors and microRNAs (miRNAs). In humans, mutations in specific miRNA genes are associated with hearing loss. In mice, experimental reduction or mutations of miRNAs in the inner ear leads to severe developmental and structural abnormalities. A comprehensive identification of miRNAs in the sensory epithelia and their gene targets will enable pathways of auditory and vestibular function to be defined.

Results

In this study, we used Next-Generation Sequencing (NGS) to identify the most prominent miRNAs in the inner ear and to define miRNA-target pairs that form pathways crucial for the function of the sensory epithelial cells. NGS of RNA from inner ear sensory epithelial cells led to the identification of 455 miRNAs in both cochlear and vestibular sensory epithelium, with 30 and 44 miRNAs found in only cochlea or vestibule, respectively. miR-6715-3p and miR-6715-5p were defined for the first time in the inner ear. Gene targets were identified for each of these miRNAs, including Arhgap12, a GTPase activating protein, for miR-6715-3p, implicating this miRNA in sensory hair cell bundle development, actin reorganization, cell adhesion and inner ear morphogenesis.

Conclusions

This study provides a comprehensive atlas of miRNAs in the inner ear sensory epithelia. The results provide further support of the essential regulatory role of miRNAs in inner ear sensory epithelia and in regulating pathways that define development and growth of these cells.

【 授权许可】

   
2014 Rudnicki et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128151343867.pdf 2448KB PDF download
Figure 8. 94KB Image download
Figure 7. 227KB Image download
Figure 6. 355KB Image download
Figure 5. 100KB Image download
Figure 4. 141KB Image download
Figure 3. 95KB Image download
Figure 2. 78KB Image download
Figure 1. 65KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Li H, Fekete DM: MicroRNAs in hair cell development and deafness. Curr Opin Otolaryngol Head Neck Surg 2010, 18(5):459-465.
  • [2]Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466(7308):835-840.
  • [3]Mencia A, Modamio-Hoybjor S, Redshaw N, Morin M, Mayo-Merino F, Olavarrieta L, Aguirre LA, del Castillo I, Steel KP, Dalmay T, Moreno F, Moreno-Pelayo MA: Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet 2009, 41(5):609-613.
  • [4]Solda G, Robusto M, Primignani P, Castorina P, Benzoni E, Cesarani A, Ambrosetti U, Asselta R, Duga S: A novel mutation within the MIR96 gene causes non-syndromic inherited hearing loss in an Italian family by altering pre-miRNA processing. Hum Mol Genet 2012, 21(3):577-585.
  • [5]Friedland DR, Eernisse R, Erbe C, Gupta N, Cioffi JA: Cholesteatoma growth and proliferation: posttranscriptional regulation by microRNA-21. Otol Neurotol 2009, 30(7):998-1005.
  • [6]Cioffi JA, Yue WY, Mendolia-Loffredo S, Hansen KR, Wackym PA, Hansen MR: MicroRNA-21 overexpression contributes to vestibular schwannoma cell proliferation and survival. Otol Neurotol 2010, 31(9):1455-1462.
  • [7]Song JJ, Kwon SK, Cho CG, Park SW, Chae SW: Microarray analysis of microRNA expression in LPS induced inflammation of human middle ear epithelial cells (HMEECs). Int J Pediatr Otorhinolaryngol 2011, 75:648-651.
  • [8]Weston MD, Pierce ML, Rocha-Sanchez S, Beisel KW, Soukup GA: MicroRNA gene expression in the mouse inner ear. Brain Res 2006, 1111(1):95-104.
  • [9]Lewis MA, Quint E, Glazier AM, Fuchs H, De Angelis MH, Langford C, van Dongen S, Abreu-Goodger C, Piipari M, Redshaw N, Dalmay T, Moreno-Pelayo MA, Enright AJ, Steel KP: An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nat Genet 2009, 41(5):614-618.
  • [10]Friedman LM, Dror AA, Mor E, Tenne T, Toren G, Satoh T, Biesemeier DJ, Shomron N, Fekete DM, Hornstein E, Avraham KB: MicroRNAs are essential for development and function of inner ear hair cells in vertebrates. Proc Natl Acad Sci USA 2009, 106(19):7915-7920.
  • [11]Soukup GA, Fritzsch B, Pierce ML, Weston MD, Jahan I, McManus MT, Harfe BD: Residual microRNA expression dictates the extent of inner ear development in conditional Dicer knockout mice. Dev Biol 2009, 328(2):328-341.
  • [12]Patel M, Cai Q, Ding D, Salvi R, Hu Z, Hu BH: The miR-183/Taok1 target pair is implicated in cochlear responses to acoustic trauma. PLoS One 2013, 8(3):e58471.
  • [13]Elkan-Miller T, Ulitsky I, Hertzano R, Rudnicki A, Dror AA, Lenz DR, Elkon R, Irmler M, Beckers J, Shamir R, Avraham KB: Integration of transcriptomics, proteomics, and microRNA analyses reveals novel microRNA regulation of targets in the mammalian inner ear. PLoS One 2011, 6(4):e18195.
  • [14]Kuhn S, Johnson SL, Furness DN, Chen J, Ingham N, Hilton JM, Steffes G, Lewis MA, Zampini V, Hackney CM, Masetto S, Holley MC, Steel KP, Marcotti W: miR-96 regulates the progression of differentiation in mammalian cochlear inner and outer hair cells. Proc Natl Acad Sci U S A 2011, 108(6):2355-2360.
  • [15]Bahloul A, Simmler MC, Michel V, Leibovici M, Perfettini I, Roux I, Weil D, Nouaille S, Zuo J, Zadro C, Licastro D, Gasparini P, Avan P, Hardelin JP, Petit C: Vezatin, an integral membrane protein of adherens junctions, is required for the sound resilience of cochlear hair cells. EMBO Mol Med 2009, 1(2):125-138.
  • [16]Matsuda M, Kobayashi Y, Masuda S, Adachi M, Watanabe T, Yamashita JK, Nishi E, Tsukita S, Furuse M: Identification of adherens junction-associated GTPase activating proteins by the fluorescence localization-based expression cloning. Exp Cell Res 2008, 314(5):939-949.
  • [17]El-Amraoui A, Petit C: Cadherins as targets for genetic diseases. Cold Spring Harb Perspect Biol 2010, 2(1):a003095.
  • [18]Ronen R, Gan I, Modai S, Sukacheov A, Dror G, Halperin E, Shomron N: miRNAkey: a software for microRNA deep sequencing analysis. Bioinformatics 2010, 26(20):2615-2616.
  • [19]Zhou H, Arcila ML, Li Z, Lee EJ, Henzler C, Liu J, Rana TM, Kosik KS: Deep annotation of mouse iso-miR and iso-moR variation. Nucleic Acids Res 2012, 40(13):5864-5875.
  • [20]Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 2008, 18(9):1509-1517.
  • [21]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5(7):621-628.
  • [22]Ghaffari R, Aranyosi AJ, Richardson GP, Freeman DM: Tectorial membrane travelling waves underlie abnormal hearing in Tectb mutant mice. Nat Commun 2010, 1:96.
  • [23]Castellano L, Stebbing J: Deep sequencing of small RNAs identifies canonical and non-canonical miRNA and endogenous siRNAs in mammalian somatic tissues. Nucleic Acids Res 2013, 41(5):3339-3351.
  • [24]Liu Q, Chen Y, Kubota F, Pan JJ, Murakami T: Expression of protocadherin-19 in the nervous system of the embryonic zebrafish. Int J Dev Biol 2010, 54(5):905-911.
  • [25]Mackenzie FE, Parker A, Parkinson NJ, Oliver PL, Brooker D, Underhill P, Lukashkina VA, Lukashkin AN, Holmes C, Brown SD: Analysis of the mouse mutant Cloth-ears shows a role for the voltage-gated sodium channel Scn8a in peripheral neural hearing loss. Genes Brain Behav 2009, 8(7):699-713.
  • [26]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-233.
  • [27]Ushakov K, Rudnicki A, Avraham KB: MicroRNAs in sensorineural diseases of the ear. Front Mol Neurosci 2013, 6:52.
  • [28]Weston MD, Pierce ML, Jensen-Smith HC, Fritzsch B, Rocha-Sanchez S, Beisel KW, Soukup GA: MicroRNA-183 family expression in hair cell development and requirement of microRNAs for hair cell maintenance and survival. Dev Dyn 2011, 240(4):808-819.
  • [29]Gu C, Li X, Tan Q, Wang Z, Chen L, Liu Y: MiR-183 family regulates chloride intracellular channel 5 expression in inner ear hair cells. Toxicol In Vitro 2013, 27(1):486-491.
  • [30]Wang XR, Zhang XM, Du J, Jiang H: MicroRNA-182 regulates otocyst-derived cell differentiation and targets T-box1 gene. Hear Res 2012, 286(1–2):55-63.
  • [31]Wang X, Gocek E, Liu CG, Studzinski GP: MicroRNAs181 regulate the expression of p27Kip1 in human myeloid leukemia cells induced to differentiate by 1,25-dihydroxyvitamin D3. Cell Cycle 2009, 8(5):736-741.
  • [32]Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P, Klein LO, Davis MM, Chen CZ: miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007, 129(1):147-161.
  • [33]Frucht CS, Santos-Sacchi J, Navaratnam DS: MicroRNA181a plays a key role in hair cell regeneration in the avian auditory epithelium. Neurosci Lett 2011, 493(1–2):44-48.
  • [34]Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Muller U, Kachar B: Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 2007, 449(7158):87-91.
  • [35]Ahmed ZM, Riazuddin S, Bernstein SL, Ahmed Z, Khan S, Griffith AJ, Morell RJ, Friedman TB, Riazuddin S, Wilcox ER: Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1 F. Am J Hum Genet 2001, 69(1):25-34.
  • [36]Ahmed ZM, Riazuddin S, Ahmad J, Bernstein SL, Guo Y, Sabar MF, Sieving P, Riazuddin S, Griffith AJ, Friedman TB, Belyantseva IA, Wilcox ER: PCDH15 is expressed in the neurosensory epithelium of the eye and ear and mutant alleles are responsible for both USH1F and DFNB23. Hum Mol Genet 2003, 12(24):3215-3223.
  • [37]Grimsley-Myers CM, Sipe CW, Geleoc GS, Lu X: The small GTPase Rac1 regulates auditory hair cell morphogenesis. J Neurosci 2009, 29(50):15859-15869.
  • [38]Gentile A, D'Alessandro L, Lazzari L, Martinoglio B, Bertotti A, Mira A, Lanzetti L, Comoglio PM, Medico E: Met-driven invasive growth involves transcriptional regulation of Arhgap12. Oncogene 2008, 27(42):5590-5598.
  • [39]Eisen R, Walid S, Ratcliffe DR, Ojakian GK: Regulation of epithelial tubule formation by Rho family GTPases. Am J Physiol Cell Physiol 2006, 290(5):C1297-1309.
  • [40]Jones C, Roper VC, Foucher I, Qian D, Banizs B, Petit C, Yoder BK, Chen P: Ciliary proteins link basal body polarization to planar cell polarity regulation. Nat Genet 2008, 40(1):69-77.
  • [41]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.
  • [42]Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N: miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 2012, 40(1):37-52.
  • [43]Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, Zlotorynski E, Yabuta N, De Vita G, Nojima H, Looijenga LH, Agami R: A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Adv Exp Med Biol 2007, 604:17-46.
  • [44]Dror AA, Politi Y, Shahin H, Lenz DR, Dossena S, Nofziger C, Fuchs H, Hrabe de Angelis M, Paulmichl M, Weiner S, Avraham KB: Calcium oxalate stone formation in the inner ear as a result of an Slc26a4 mutation. J Biol Chem 2010, 285(28):21724-21735.
  文献评价指标  
  下载次数:43次 浏览次数:24次