期刊论文详细信息
BMC Genomics
Emiliania huxleyi endures N-limitation with an efficient metabolic budgeting and effective ATP synthesis
Uwe John2  Björn Rost2  Peter Von Dassow1  Sebastian D Rokitta2 
[1]CNRS, Sorbonne Universités UPMC Univ. Paris 06, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, UMI 3614 Evolutionary Biology and Ecology of Algae, Santiago, Chile
[2]Alfred Wegener Institute - Helmholtz-Centre for Polar- and Marine Research, Am Handelshafen 12, Bremerhaven 27570, Germany
关键词: Transcriptomics;    Proline oxidation;    Polyamines;    Ornithine-urea-cycle;    Nitrogen;    Microarray;    Metabolism;    Malate:quinone-oxidoreductase;    Limitation;    Emiliania huxleyi;   
Others  :  1090054
DOI  :  10.1186/1471-2164-15-1051
 received in 2014-04-02, accepted in 2014-11-18,  发布年份 2014
PDF
【 摘 要 】

Background

Global change will affect patterns of nutrient upwelling in marine environments, potentially becoming even stricter regulators of phytoplankton primary productivity. To better understand phytoplankton nutrient utilization on the subcellular basis, we assessed the transcriptomic responses of the life-cycle stages of the biogeochemically important microalgae Emiliania huxleyi to nitrogen-limitation. Cells grown in batch cultures were harvested at ‘early’ and ‘full’ nitrogen-limitation and were compared with non-limited cells. We applied microarray-based transcriptome profilings, covering ~10.000 known E. huxleyi gene models, and screened for expression patterns that indicate the subcellular responses.

Results

The diploid life-cycle stage scavenges nitrogen from external organic sources and -like diatoms- uses the ornithine-urea cycle to rapidly turn over cellular nitrogen. The haploid stage reacts similarly, although nitrogen scavenging is less pronounced and lipid oxidation is more prominent. Generally, polyamines and proline appear to constitute major organic pools that back up cellular nitrogen. Both stages induce a malate:quinone-oxidoreductase that efficiently feeds electrons into the respiratory chain and drives ATP generation with reduced respiratory carbon throughput.

Conclusions

The use of the ornithine-urea cycle to budget the cellular nitrogen in situations of limitation resembles the responses observed earlier in diatoms. This suggests that underlying biochemical mechanisms are conserved among distant clades of marine phototrophic protists. The ornithine-urea cycle and proline oxidation appear to constitute a sensory-regulatory system that monitors and controls cellular nitrogen budgets under limitation. The similarity between the responses of the life-cycle stages, despite the usage of different genes, also indicates a strong functional consistency in the responses to nitrogen-limitation that appears to be owed to biochemical requirements. The malate:quinone-oxidoreductase is a genomic feature that appears to be absent from diatom genomes, and it is likely to strongly contribute to the uniquely high endurance of E. huxleyi under nutrient limitation.

【 授权许可】

   
2014 Rokitta et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128153759682.pdf 1684KB PDF download
Figure 4. 181KB Image download
Figure 3. 93KB Image download
Figure 2. 66KB Image download
Figure 1. 140KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Field CB, Behrenfeld MJ, Randerson JT, Falkowski P: Primary production of the biosphere: integrating terrestrial and oceanic components. Science 1998, 281(5374):237-240.
  • [2]Behrenfeld MJ, O'Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES: Climate-driven trends in contemporary ocean productivity. Nature 2006, 444(7120):752-755.
  • [3]Steinacher M, Joos F, Frölicher TL, Bopp L, Cadule P, Cocco V, Doney SC, Gehlen M, Lindsay K, Moore JK, Schneider B, Segschneider J: Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 2010, 7(3):979-1005.
  • [4]Seitzinger SP, Kroeze C: Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Glob Biogeochem Cycles 1998, 12(1):93-113.
  • [5]Bakun A, Field DB, Redondo-Rodriguez ANA, Weeks SJ: Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems. Glob Change Biol 2010, 16(4):1213-1228.
  • [6]Felsner G, Sommer MS, Gruenheit N, Hempel F, Moog D, Zauner S, Martin W, Maier UG: ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Genome Biol Evol 2011, 3:140.
  • [7]Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F, Mayer C, Miller J, Monier A, Salamov A, Young J, Aguilar M, Claverie J-M, Frickenhaus S, Gonzalez K, Herman EK, Lin YC, Napier J, Ogata H, Sarno AF, Schmutz J, Schroeder D, De Vargas C, Verret F, Von Dassow P, Valentin K, Van de Peer Y, Wheeler G, Dacks JB, The Emiliania huxleyi Genome annotation consortium, et al.: Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 2013, 499(7457):209-213.
  • [8]Paasche E: A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions. Phycologia 2002, 40(6):503-529.
  • [9]Rost B, Riebesell U: Coccolithophores and the biological pump: responses to environmental changes. In Coccolithophores - From Molecular Processes to Global Impact. Edited by Thierstein HR, Young EB. Berlin: Springer; 2004:76-99.
  • [10]Kegel JU, John U, Valentin K, Frickenhaus S: Genome variations associated with viral susceptibility and calcification in Emiliania huxleyi. PLoS One 2013, 8(11):e80684.
  • [11]Löbl M, Cockshutt AM, Campbell D, Finkel ZV: Physiological basis for high resistance to photoinhibition under nitrogen depletion in Emiliania huxleyi. Limnol Oceanograp 2010, 55(6):2150-2160.
  • [12]Raven JA, Crawfurd K: Environmental controls on coccolithophore calcification. Mar Ecol Prog Ser 2012, 470:137-166.
  • [13]Borchard C, Borges AV, Händel N, Engel A: Biogeochemical response of Emiliania huxleyi (PML B92/11) to elevated CO2 and temperature under phosphorous limitation: a chemostat study. J Exp Mar Biol Ecol 2011, 410:61-71.
  • [14]Van Oostende N, Moerdijk-Poortvliet TCW, Boschker HTS, Vyverman W, Sabbe K: Release of dissolved carbohydrates by Emiliania huxleyi and formation of transparent exopolymer particles depend on algal life cycle and bacterial activity. Environ Microbiol 2013, 15(5):1514-1531.
  • [15]Green JC, Course PA, Tarran GA: The life-cycle of Emiliania huxleyi: a brief review and a study of relative ploidy levels analysed by flow cytometry. J Mar Syst 1996, 9:33-44.
  • [16]Von Dassow P, Ogata H, Probert I, Wincker P, Da Silva C, Audic S, Claverie J-M, De Vargas C: Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. Genome Biol 2009, 10(10):R114. BioMed Central Full Text
  • [17]Frada M, Probert I, Allen MJ, Wilson WH, De Vargas C: The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. PNAS 2008, 105(41):15944-15949.
  • [18]Houdan A, Probert I, Van Lenning K, Lefebvre S: Comparison of photosynthetic responses in diploid and haploid life-cycle phases of Emiliania huxleyi (Prymnesiophyceae). Mar Ecol Prog Ser 2005, 292:139-146.
  • [19]Rokitta SD, De Nooijer LJ, Trimborn S, De Vargas C, Rost B, John U: Transcriptome analyses reveal differential gene expression patterns between life-cycle stages of Emiliania huxleyi (Haptophyta) and reflect specialization to different ecological niches. J Phycol 2011, 47:829-838.
  • [20]Barton AD, Dutkiewicz S, Flierl G, Bragg J, Follows MJ: Patterns of diversity in marine phytoplankton. Science 2010, 327(5972):1509-1511.
  • [21]Follows MJ, Dutkiewicz S, Grant S, Chisholm SW: Emergent biogeography of microbial communities in a model ocean. Science 2007, 315(5820):1843-1846.
  • [22]Xu Y, Boucher JM, Morel FMM: Expression and diversity of alkaline phosphatase EHAP1 in Emiliania huxleyi (Prymnesiophyceae). J Phycol 2010, 46(1):85-92.
  • [23]Wolf-Gladrow DA, Zeebe RE, Klaas C, Koertzinger A, Dickson AG: Total alkalinity: the explicit conservative expression and its application to biogeochemical processes. Spec Issue 2007, 106(1–2):287-300.
  • [24]Rokitta SD, John U, Rost B: Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi. PloS One 2012, 7(12):e52212.
  • [25]Dyhrman ST, Haley ST, Birkeland SR, Wurch LL, Cipriano MJ, McArthur AG: Long serial analysis of gene expression for gene discovery and transcriptome profiling in the widespread marine coccolithophore emiliania huxleyi. Appl Environ Microbiol 2006, 72(1):252-260.
  • [26]Willows RD: Chlorophyll Synthesis. In The Structure and Function of Plastids. 23rd edition. Edited by Wise RR, Hoober JK. Netherlands: Springer; 2006:295-313.
  • [27]McKew BA, Lefebvre SC, Achterberg EP, Metodieva G, Raines CA, Metodiev MV, Geider RJ: Plasticity in the proteome of Emiliania huxleyi CCMP 1516 to extremes of light is highly targeted. New Phytol 2013, 200(1):61-73.
  • [28]Benner I, Passow U: Utilization of organic nutrients by coccolithophores. Mar Ecol Prog Ser 2010, 404:21-29.
  • [29]Rouco M, Branson O, Lebrato M, Iglesias-Rodriguez MD: The effect of nitrate and phosphate availability on Emiliania huxleyi (NZEH) physiology under different CO2 scenarios. Front in Microbiol 2013, 4:155.
  • [30]Allen AE, Dupont CL, Obornik M, Horak A, Nunes-Nesi A, McCrow JP, Zheng H, Johnson DA, Hu H, Fernie AR, Bowler C: Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 2011, 473(7346):203-207.
  • [31]Hockin NL, Mock T, Mulholland F, Kopriva S, Malin G: The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol 2012, 158(1):299-312.
  • [32]Bender SJ, Durkin CA, Berthiaume CT, Morales RL, Armbrust EV: Transcriptional responses of three model diatoms to nitrate limitation of growth. Front Mar Sci 2014, 1:3.
  • [33]Dagenais-Bellefeuille S, Morse D: Putting the N in dinoflagellates. Front Microbiol 2013, 4:369.
  • [34]Krell A, Funck D, Plettner I, John U, Dieckmann G: Regulation of proline metabolism under salt stress in the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). J Phycol 2007, 43(4):753-762.
  • [35]Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio A: Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 2010, 231(6):1237-1249.
  • [36]Szabados L, Savouré A: Proline: a multifunctional amino acid. Trends Plant Sci 2010, 15(2):89-97.
  • [37]Altman A, Levin N: Interactions of polyamines and nitrogen nutrition in plants. Physiol Plant 1993, 89(3):653-658.
  • [38]Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A: Unraveling Δ1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 2009, 284(39):26482-26492.
  • [39]Pandhare J, Donald SP, Cooper SK, Phang JM: Regulation and function of proline oxidase under nutrient stress. J Cell Biochem 2009, 107(4):759-768.
  • [40]Liu Y, Borchert GL, Donald SP, Diwan BA, Anver M, Phang JM: Proline oxidase functions as a mitochondrial tumor suppressor in human cancers. Cancer Res 2009, 69(16):6414-6422.
  • [41]Natarajan SK, Zhu W, Liang X, Zhang L, Demers AJ, Zimmerman MC, Simpson MA, Becker DF: Proline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death. Free Radic Biol Med 2012, 53(5):1181-1191.
  • [42]Maurin C, Le Gal Y: Isoforms of glutamine synthetase in the marine coccolithophorid Emiliania huxleyi (Prymnesiophyceae). Comp Biochem Physiol B Biochem Mol Biol 1997, 118(4):903-912.
  • [43]Maurin C, Le Gal Y: Glutamine synthetase in the marine coccolithophorid Emiliania huxleyi (Prymnesiophyceae): regulation of activity in relation to light and nitrogen availability. Plant Sci 1997, 122(1):61-69.
  • [44]Huppe HC, Turpin DH: Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Mol Biol 1994, 45:577-607.
  • [45]Benner I, Diner RE, Lefebvre SC, Li D, Komada T, Carpenter EJ, Stillman JH: Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Philos Trans R Soc B Biol Sci 2013, 368(1627):1627.
  • [46]Eltgroth ML, Watwood RL, Wolfe GV: Production and cellular localization of neutral long-chain lipids in the Haptophyte algae Isochrysis galbana and Emiliania huxleyi. J Phycol 2005, 41(5):1000-1009.
  • [47]Benthien A, Zondervan I, Engel A, Hefter J, Terbrüggen A, Riebesell U: Carbon isotopic fractionation during a mesocosm bloom experiment dominated by Emiliania huxleyi: effects of CO2 concentration and primary production. Geochimica Cosmochimica Acta 2007, 71(6):1528-1541.
  • [48]Palmucci M, Ratti S, Giordano M: Ecological and evolutionary implications of carbon allocation in marine phytoplankton as a function of nitrogen availability: a fourier transform infrared spectroscopy approach. J Phycol 2011, 47(2):313-323.
  • [49]Danne JC, Gornik SG, MacRae JI, McConville MJ, Waller RF: Alveolate mitochondrial metabolic evolution: dinoflagellates force reassessment of the role of parasitism as a driver of change in apicomplexans. Mol Biol Evol 2013, 30(1):123-139.
  • [50]Molenaar D, van der Rest ME, Petrović S: Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum. Eur J Biochem 1998, 254(2):395-403.
  • [51]Kather B, Stingl K, van der Rest ME, Altendorf K, Molenaar D: Another unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase. J Bacteriol 2000, 182(11):3204-3209.
  • [52]Kaffes A, Thoms S, Trimborn S, Rost B, Langer G, Richter K-U, Köhler A, Norici A, Giordano M: Carbon and nitrogen fluxes in the marine coccolithophore Emiliania huxleyi grown under different nitrate concentrations. J Exp Mar Biol Ecol 2010, 393(1–2):1-8.
  • [53]Poulsen N, Kröger N: A new molecular tool for transgenic diatoms. FEBS J 2005, 272(13):3413-3423.
  • [54]Quinn PS, Bowers RM, Zhan X, Wahlund TM, Fanelli MA, Olszova D, Read B: cDNA Microarrays as a tool for identification of biomineralization proteins in the coccolithophorid Emiliania huxleyi (Haptophyta). Appl Environ Microbiol 2006, 72(8):5512-5526.
  • [55]Prihoda J, Tanaka A, De Paula WBM, Allen JF, Tirichine L, Bowler C: Chloroplast-mitochondria cross-talk in diatoms. J Exp Bot 2012, 63(4):1543-1557.
  • [56]Kegel JU, Blaxter M, Allen MJ, Metfies K, Wilson WH, Valentin K: Transcriptional host-virus interaction of Emiliania huxleyi (Haptophyceae) and EhV-86 deduced from combined analysis of expressed sequence tags and microarrays. Eur J Phycol 2010, 45(1):1-12.
  • [57]Bochenek M, Etherington GJ, Koprivova A, Mugford ST, Bell TG, Malin G, Kopriva S: Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi. New Phytol 2013, 199(3):650-662.
  • [58]Dickson AG: An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep Sea Res Part I-Oceanograp Res Pap 1981, 28(6):609-623.
  • [59]Stoll MHC, Bakker K, Nobbe GH, Haese RR: Continuous-flow analysis of dissolved inorganic carbon content in seawater. Anal Chem 2001, 73(17):4111-4116.
  • [60]Pierrot DE, Lewis E, Wallace DWR: MS Excel program developed for CO2 system calculations. In Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory (ORNL). Oak Ridge, Tennessee, USA; 2006.
  • [61]Dickson AG, Millero FJ: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res I 1987, 34(10):1733-1743.
  • [62]Dickson AG: Standard potential of the reaction: AgCl(s) + ½ H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4− in synthetic seawater from 273.15 to 318.15 K. J Chem Thermodyn 1990, 22:113-127.
  • [63]Stoll HM, Ruiz Encinar J, Ignacio Garcia Alonso J, Rosenthal Y, Probert I, Klaas C: A first look at paleotemperature prospects from Mg in coccolith carbonate: cleaning techniques and culture measurements. Geochem Geophys Geosyst 2001, 2(5):1047.
  • [64]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 1995, 57:289-300.
  • [65]Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18):3674-3676.
  文献评价指标  
  下载次数:38次 浏览次数:56次