期刊论文详细信息
BMC Genomics
Identification of cis-regulatory modules encoding temporal dynamics during development
Laurent Perrin1  Carl Herrmann4  Stein Aerts3  Magali Iche-Torres2  Céline Guichard2  Denis Seyres2  Delphine Potier3 
[1] CNRS, Marseille, France;Aix-Marseille Université, UMR1090 TAGC, Marseille F-13288, France;Laboratory of Computational Biology, Center for Human Genetics, University of Leuven, Herestraat 49, P.O. Box 602 3000 Leuven, Belgium;IPMB, University of Heidelberg and German Cancer Research Center, div. of Theoretical Bioinformatics, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
关键词: Cardiogenesis;    Drosophila metamorphosis;    Transcription;    Motif discovery;    Temporal control;    Cis-regulatory modules;   
Others  :  1216546
DOI  :  10.1186/1471-2164-15-534
 received in 2014-02-12, accepted in 2014-06-13,  发布年份 2014
PDF
【 摘 要 】

Background

Developmental transcriptional regulatory networks are circuits of transcription factors (TFs) and cis-acting DNA elements (Cis Regulatory Modules, CRMs) that dynamically control expression of downstream genes. Comprehensive knowledge of these networks is an essential step towards our understanding of developmental processes. However, this knowledge is mostly based on genome-wide mapping of transcription factor binding sites, and therefore requires prior knowledge regarding the TFs involved in the network.

Results

Focusing on how temporal control of gene expression is integrated within a developmental network, we applied an in silico approach to discover regulatory motifs and CRMs of co-expressed genes, with no prior knowledge about the involved TFs. Our aim was to identify regulatory motifs and potential trans-acting factors which regulate the temporal expression of co-expressed gene sets during a particular process of organogenesis, namely adult heart formation in Drosophila. Starting from whole genome tissue specific expression dynamics, we used an in silico method, cisTargetX, to predict TF binding motifs and CRMs. Potential Nuclear Receptor (NR) binding motifs were predicted to control the temporal expression profile of a gene set with increased expression levels during mid metamorphosis. The predicted CRMs and NR motifs were validated in vivo by reporter gene essays. In addition, we provide evidence that three NRs modulate CRM activity and behave as temporal regulators of target enhancers.

Conclusions

Our approach was successful in identifying CRMs and potential TFs acting on the temporal regulation of target genes. In addition, our results suggest a modular architecture of the regulatory machinery, in which the temporal and spatial regulation can be uncoupled and encoded by distinct CRMs.

【 授权许可】

   
2014 Potier et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150701043339931.pdf 2118KB PDF download
Figure 6. 67KB Image download
Figure 5. 128KB Image download
Figure 4. 58KB Image download
Figure 3. 112KB Image download
Figure 2. 105KB Image download
Figure 3. 34KB Image download
【 图 表 】

Figure 3.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Bonn S, Furlong EEM: cis-regulatory networks during development: a view of drosophila. Curr Opin Genet Dev 2008, 18:513-520.
  • [2]Davidson EH, Levine MS: Properties of developmental gene regulatory networks. Proc Natl Acad Sci U S A 2008, 105:20063-20066.
  • [3]Li L, Zhu Q, He X, Sinha S, Halfon MS: Large-scale analysis of transcriptional cis-regulatory modules reveals both common features and distinct subclasses. Genome Biol 2007, 8:R101.
  • [4]Sandmann T, Girardot C, Brehme M, Tongprasit W, Stolc V, Furlong EEM: A core transcriptional network for early mesoderm development in drosophila melanogaster. Genes Dev 2007, 21:436-449.
  • [5]Liu Y-H, Jakobsen JS, Valentin G, Amarantos I, Gilmour DT, Furlong EEM: A systematic analysis of Tinman function reveals Eya and JAK-STAT signaling as essential regulators of muscle development. Dev Cell 2009, 16:280-291.
  • [6]Zinzen RP, Girardot C, Gagneur J, Braun M, Furlong EEM: Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature 2009, 462:65-70.
  • [7]Junion G, Spivakov M, Girardot C, Braun M, Gustafson EH, Birney E, Furlong EEM: A transcription factor collective defines cardiac cell fate and reflects lineage history. Cell 2012, 148:473-486.
  • [8]Estrada B, Choe SE, Gisselbrecht SS, Michaud S, Raj L, Busser BW, Halfon MS, Church GM, Michelson AM: An integrated strategy for analyzing the unique developmental programs of different myoblast subtypes. PLoS Genet 2006, 2:e16.
  • [9]Aerts S, Quan X-J, Claeys A, Naval Sanchez M, Tate P, Yan J, Hassan BA: Robust target gene discovery through transcriptome perturbations and genome-wide enhancer predictions in drosophila uncovers a regulatory basis for sensory specification. PLoS Biol 2010, 8:e1000435.
  • [10]Mayer H, Bilban M, Kurtev V, Gruber F, Wagner O, Binder BR, de Martin R: Deciphering regulatory patterns of inflammatory gene expression from interleukin-1-stimulated human endothelial cells. Arterioscler Thromb Vasc Biol 2004, 24:1192-1198.
  • [11]Tapia A, Vilos C, Marín JC, Croxatto HB, Devoto L: Bioinformatic detection of E47, E2F1 and SREBP1 transcription factors as potential regulators of genes associated to acquisition of endometrial receptivity. Reprod Biol Endocrinol 2011, 9:14.
  • [12]Kantorovitz MR, Kazemian M, Kinston S, Miranda-Saavedra D, Zhu Q, Robinson GE, Göttgens B, Halfon MS, Sinha S: Motif-blind, genome-wide discovery of cis-regulatory modules in drosophila and mouse. Dev Cell 2009, 17:568-579.
  • [13]Ahmad SM, Busser BW, Huang D, Cozart EJ, Michaud S, Zhu X, Jeffries N, Aboukhalil A, Bulyk ML, Ovcharenko I, Michelson AM: Machine learning classification of cell-specific cardiac enhancers uncovers developmental subnetworks regulating progenitor cell division and cell fate specification. Development 2014, 141:878-888.
  • [14]Potier D, Atak ZK, Sanchez MN, Herrmann C, Aerts S: Using cisTargetX to predict transcriptional targets and networks in drosophila. Methods Mol Biol Clift Nj 2012, 786:291-314. Methods in Molecular Biology
  • [15]Monier B, Astier M, Sémériva M, Perrin L: Steroid-dependent modification of Hox function drives myocyte reprogramming in the drosophila heart. Development 2005, 132:5283-5293.
  • [16]Zeitouni B, Sénatore S, Séverac D, Aknin C, Sémériva M, Perrin L: Signalling pathways involved in adult heart formation revealed by gene expression profiling in drosophila. PLoS Genet 2007, 3:1907-1921.
  • [17]Monnier V, Iché-Torres M, Rera M, Contremoulins V, Guichard C, Lalevée N, Tricoire H, Perrin L: dJun and Vri/dNFIL3 are major regulators of cardiac aging in drosophila. PLoS Genet 2012, 8:e1003081.
  • [18]Thomas-Chollier M, Defrance M, Medina-Rivera A, Sand O, Herrmann C, Thieffry D, van Helden J: RSAT 2011: regulatory sequence analysis tools. Nucleic Acids Res 2011, 39(suppl):W86-W91.
  • [19]Seyres D, Röder L, Perrin L: Genes and networks regulating cardiac development and function in flies: genetic and functional genomic approaches. Brief Funct Genomics 2012, 11:366-374.
  • [20]King-Jones K, Thummel CS: Nuclear receptors–a perspective from drosophila. Nat Rev Genet 2005, 6:311-323.
  • [21]Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, Weinstock GM, Wilson RK, Gibbs RA, Kent WJ, Miller W, Haussler D: Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 2005, 15:1034-1050.
  • [22]McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL: Spatiotemporal rescue of memory dysfunction in drosophila. Science 2003, 302:1765-1768.
  • [23]Segraves WA, Hogness DS: The E75 ecdysone-inducible gene responsible for the 75B early puff in drosophila encodes two new members of the steroid receptor superfamily. Genes Dev 1990, 4:204-219.
  • [24]Johnston DM, Sedkov Y, Petruk S, Riley KM, Fujioka M, Jaynes JB, Mazo A: Ecdysone- and NO-mediated gene regulation by competing EcR/Usp and E75A nuclear receptors during drosophila development. Mol Cell 2011, 44:51-61.
  • [25]Reinking J, Lam MMS, Pardee K, Sampson HM, Liu S, Yang P, Williams S, White W, Lajoie G, Edwards A, Krause HM: The drosophila nuclear receptor e75 contains heme and is gas responsive. Cell 2005, 122:195-207.
  • [26]Gotea V, Visel A, Westlund JM, Nobrega MA, Pennacchio LA, Ovcharenko I: Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers. Genome Res 2010, 20:565-577.
  • [27]Venkatesh TV, Park M, Ocorr K, Nemaceck J, Golden K, Wemple M, Bodmer R: Cardiac enhancer activity of the homeobox gene tinman depends on CREB consensus binding sites in drosophila. Genesis 2000, 26:55-66.
  • [28]Weng Y-J, Hsieh DJ-Y, Kuo W-W, Lai T-Y, Hsu H-H, Tsai C-H, Tsai F-J, Lin D-Y, Lin JA, Huang C-Y, Tung K-C: E4BP4 is a cardiac survival factor and essential for embryonic heart development. Mol Cell Biochem 2010, 340:187-194.
  • [29]Wilson GN: Heterochrony and human malformation. Am J Med Genet 1988, 29:311-321.
  • [30]Ciglar L, Furlong EEM: Conservation and divergence in developmental networks: a view from drosophila myogenesis. Curr Opin Cell Biol 2009, 21:754-760.
  • [31]Ozbudak EM, Pourquié O: The vertebrate segmentation clock: the tip of the iceberg. Curr Opin Genet Dev 2008, 18:317-323.
  • [32]Kondo T, Plaza S, Zanet J, Benrabah E, Valenti P, Hashimoto Y, Kobayashi S, Payre F, Kageyama Y: Small peptides switch the transcriptional activity of shavenbaby during drosophila embryogenesis. Science 2010, 329:336-339.
  • [33]Resnick TD, McCulloch KA, Rougvie AE: MiRNAs give worms the time of their lives: small RNAs and temporal control in caenorhabditis elegans. Dev Dyn 2010, 239:1477-1489.
  • [34]Martinez NJ, Walhout AJM: The interplay between transcription factors and microRNAs in genome-scale regulatory networks. Bioessays 2009, 31:435-445.
  • [35]Kozlova T, Thummel CS: Steroid regulation of postembryonic development and reproduction in drosophila. Trends Endocrinol Metab 2000, 11:276-280.
  • [36]Mou X, Duncan DM, Baehrecke EH, Duncan I: Control of target gene specificity during metamorphosis by the steroid response gene E93. Proc Natl Acad Sci U S A 2012, 109:2949-2954.
  • [37]O’Keefe DD, Thomas SR, Bolin K, Griggs E, Edgar BA, Buttitta LA: Combinatorial control of temporal gene expression in the drosophila wing by enhancers and core promoters. BMC Genomics 2012, 13:498.
  • [38]Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001, 98:5116-5121.
  • [39]Mahony S, Benos PV: STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic Acids Res 2007, 35(Web Server issue):W253-W258.
  • [40]Bischof J, Maeda RK, Hediger M, Karch F, Basler K: An optimized transgenesis system for drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A 2007, 104:3312-3317.
  文献评价指标  
  下载次数:35次 浏览次数:34次