期刊论文详细信息
BMC Evolutionary Biology
Smelt was the likely beneficiary of an antifreeze gene laterally transferred between fishes
Peter L Davies1  William S Davidson2  Jieying Li2  Laurie A Graham1 
[1] Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, K7L 3N6, Canada;Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
关键词: Osmerus mordax;    Antifreeze protein;    Horizontal gene transfer;    Ice-binding;   
Others  :  1140239
DOI  :  10.1186/1471-2148-12-190
 received in 2012-05-08, accepted in 2012-08-20,  发布年份 2012
PDF
【 摘 要 】

Background

Type II antifreeze protein (AFP) from the rainbow smelt, Osmerus mordax, is a calcium-dependent C-type lectin homolog, similar to the AFPs from herring and sea raven. While C-type lectins are ubiquitous, type II AFPs are only found in a few species in three widely separated branches of teleost fishes. Furthermore, several other non-homologous AFPs are found in intervening species. We have previously postulated that this sporadic distribution has resulted from lateral gene transfer. The alternative hypothesis, that the AFP evolved from a lectin present in a shared ancestor and that this gene was lost in most species, is not favored because both the exon and intron sequences are highly conserved.

Results

Here we have sequenced and annotated a 160 kb smelt BAC clone containing a centrally-located AFP gene along with 14 other genes. Quantitative PCR indicates that there is but a single copy of this gene within the smelt genome, which is atypical for fish AFP genes. The corresponding syntenic region has been identified and searched in a number of other species and found to be devoid of lectin or AFP sequences. Unlike the introns of the AFP gene, the intronic sequences of the flanking genes are not conserved between species. As well, the rate and pattern of mutation in the AFP gene are radically different from those seen in other smelt and herring genes.

Conclusions

These results provide stand-alone support for an example of lateral gene transfer between vertebrate species. They should further inform the debate about genetically modified organisms by showing that gene transfer between ‘higher’ eukaryotes can occur naturally. Analysis of the syntenic regions from several fishes strongly suggests that the smelt acquired the AFP gene from the herring.

【 授权许可】

   
2012 Graham et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324154024228.pdf 1575KB PDF download
Figure 6. 78KB Image download
Figure 5. 16KB Image download
Figure 4. 80KB Image download
Figure 3. 20KB Image download
Figure 2. 203KB Image download
Figure 1. 32KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]DeVries AL, Wohlschlag DE: Freezing resistance in some Antarctic fishes. Science 1969, 163(871):1073-1075.
  • [2]Raymond JA, DeVries AL: Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci USA 1977, 74(6):2589-2593.
  • [3]Duman JG: Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol 2001, 63:327-357.
  • [4]Duman JG, Olsen TM: Thermal hysteresis protein activity in bacteria, fungi and phylogenetically diverse plants. Cryobiology 1993, 30:322-328.
  • [5]Fletcher GL, Hew CL, Davies PL: Antifreeze proteins of teleost fishes. Annu Rev Physiol 2001, 63:359-390.
  • [6]Hoshino T, Kiriaki M, Nakajima T: Novel thermal hysteresis proteins from low temperature basidiomycete, Coprinus psychromorbidus. Cryo-Letters 2003, 24(3):135-142.
  • [7]Raymond JA, Knight CA: Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms. Cryobiology 2003, 46(2):174-181.
  • [8]Gilbert JA, Davies PL, Laybourn-Parry J: A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol Letts 2005, 245(1):67-72.
  • [9]Jia Z, Davies PL: Antifreeze proteins: an unusual receptor-ligand interaction. Trends Biochem Sci 2002, 27(2):101-106.
  • [10]Cheng CH: Evolution of the diverse antifreeze proteins. Curr Opin Genet Dev 1998, 8(6):715-720.
  • [11]Ewart KV, Rubinsky B, Fletcher GL: Structural and functional similarity between fish antifreeze proteins and calcium-dependent lectins. Biochem Biophys Res Commun 1992, 185(1):335-340.
  • [12]Ewart KV, Fletcher GL: Herring antifreeze protein: primary structure and evidence for a C-type lectin evolutionary origin. Mol Mar Biol Biotechnol 1993, 2(1):20-27.
  • [13]Nishimiya Y, Kondo H, Takamichi M, Sugimoto H, Suzuki M, Miura A, Tsuda S: Crystal structure and mutational analysis of Ca2 + −independent type II antifreeze protein from longsnout poacher, Brachyopsis rostratus. J Mol Biol 2008, 382(3):734-746.
  • [14]Liu Y, Li Z, Lin Q, Kosinski J, Seetharaman J, Bujnicki JM, Sivaraman J, Hew CL: Structure and evolutionary origin of Ca2 + −dependent herring type II antifreeze protein. PLoS One 2007, 2(6):e548.
  • [15]Loewen MC, Gronwald W, Sonnichsen FD, Sykes BD, Davies PL: The ice-binding site of sea raven antifreeze protein is distinct from the carbohydrate-binding site of the homologous C-type lectin. Biochemistry 1998, 37(51):17745-17753.
  • [16]Graham LA, Lougheed SC, Ewart KV, Davies PL: Lateral transfer of a lectin-like antifreeze protein gene in fishes. PLoS One 2008, 3(7):e2616.
  • [17]Steinke D, Salzburger W, Meyer A: Novel relationships among ten fish model species revealed based on a phylogenomic analysis using ESTs. J Mol Evol 2006, 62(6):772-784.
  • [18]Peng Z, He S, Wang J, Wang W, Diogo R: Mitochondrial molecular clocks and the origin of the major Otocephalan clades (Pisces: Teleostei): A new insight. Gene 2006, 370:113-124.
  • [19]Azuma Y, Kumazawa Y, Miya M, Mabuchi K, Nishida M: Mitogenomic evaluation of the historical biogeography of cichlids toward reliable dating of teleostean divergences. BMC Evol Biol 2008, 8:215. BioMed Central Full Text
  • [20]Yamashita Y, Miura R, Takemoto Y, Tsuda S, Kawahara H, Obata H: Type II antifreeze protein from a mid-latitude freshwater fish, Japanese smelt (Hypomesus nipponensis). Biosci Biotechnol Biochem 2003, 67(3):461-466.
  • [21]Scott GK, Hew CL, Davies PL: Antifreeze protein genes are tandemly linked and clustered in the genome of the winter flounder. Proc Natl Acad Sci USA 1985, 82(9):2613-2617.
  • [22]Libuda DE, Winston F: Alterations in DNA replication and histone levels promote histone gene amplification in Saccharomyces cerevisiae. Genetics 2010, 184(4):985-997.
  • [23]Hendrickson H, Slechta ES, Bergthorsson U, Andersson DI, Roth JR: Amplification-mutagenesis: evidence that "directed" adaptive mutation and general hypermutability result from growth with a selected gene amplification. Proc Natl Acad Sci USA 2002, 99(4):2164-2169.
  • [24]Bergthorsson U, Andersson DI, Roth JR: Ohno's dilemma: evolution of new genes under continuous selection. Proc Natl Acad Sci USA 2007, 104(43):17004-17009.
  • [25]Davies PL, Hough C, Scott GK, Ng N, White BN, Hew CL: Antifreeze protein genes of the winter flounder. J Biol Chem 1984, 259(14):9241-9247.
  • [26]Hew CL, Wang NC, Joshi S, Fletcher GL, Scott GK, Hayes PH, Buettner B, Davies PL: Multiple genes provide the basis for antifreeze protein diversity and dosage in the ocean pout, Macrozoarces americanus. J Biol Chem 1988, 263(24):12049-12055.
  • [27]Wang X, DeVries AL, Cheng CH: Genomic basis for antifreeze peptide heterogeneity and abundance in an Antarctic eel pout: gene structures and organization. Mol Mar Biol Biotechnol 1995, 4(2):135-147.
  • [28]Chen L, DeVries AL, Cheng CH: Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc Natl Acad Sci USA 1997, 94(8):3817-3822.
  • [29]Tenover FC: Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control 2006, 34(5 Suppl 1):S3-S10. discussion S64-73
  • [30]Hourston AS, Rosenthal H: Sperm density during active spawning of pacific herring Clupea harengus pallasi. J Fish Res Board Can 1976, 33:1788-1790.
  • [31]Smith K, Spadafora C: Sperm-mediated gene transfer: applications and implications. Bioessays 2005, 27(5):551-562.
  • [32]Keeling PJ, Palmer JD: Lateral transfer at the gene and subgenic levels in the evolution of eukaryotic enolase. Proc Natl Acad Sci USA 2001, 98(19):10745-10750.
  • [33]Moran NA, Jarvik T: Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 2010, 328(5978):624-627.
  • [34]Mayer WE, Schuster LN, Bartelmes G, Dieterich C, Sommer RJ: Horizontal gene transfer of microbial cellulases into nematode genomes is associated with functional assimilation and gene turnover. BMC Evol Biol 2011, 11(1):13. BioMed Central Full Text
  • [35]von Schalburg KR, Leong J, Cooper GA, Robb A, Beetz-Sargent MR, Lieph R, Holt RA, Moore R, Ewart KV, Driedzic WR, et al.: Rainbow smelt (Osmerus mordax) genomic library and EST resources. Mar Biotechnol (NY) 2008, 10(5):487-491.
  • [36]Consortium TU: Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res 2011, 39:D214-D219. Database issue
  • [37]Ma X: The characterization of lactate dehydrogenase genes in rainbow smelt (Osmerus mordax) . Canada: Simon Fraser University; 2009.
  • [38]Richards RC, Achenbach JC, Short CE, Kimball J, Reith ME, Driedzic WR, Ewart KV: Seasonal expressed sequence tags of rainbow smelt (Osmerus mordax) revealed by subtractive hybridization and the identification of two genes up-regulated during winter. Gene 2008, 424(1–2):56-62.
  • [39]Olsvik PA, Waagbo R, Pedersen SA, Meier S: Transcriptional effects of dietary exposure of oil-contaminated Calanus finmarchicus in Atlantic herring (Clupea harengus). J Toxicol Environ Health A 2011, 74(7–9):508-528.
  • [40]Roberts SB, Hauser L, Seeb LW, Seeb JE: Development of genomic resources for Pacific Herring through targeted transcriptome pyrosequencing. PLoS One 2012, 7(2):e30908.
  • [41]Nakamura Y, Gojobori T, Ikemura T: Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 2000, 28(1):292.
  • [42]van Veen T, Katial A, Shinohara T, Barrett DJ, Wiggert B, Chader GJ, Nickerson JM: Retinal photoreceptor neurons and pinealocytes accumulate mRNA for interphotoreceptor retinoid-binding protein (IRBP). FEBS Lett 1986, 208(1):133-137.
  • [43]Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, et al.: Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 2003, 26(1):121-138.
  • [44]Ishiguro NB, Miya M, Nishida M: Basal euteleostean relationships: a mitogenomic perspective on the phylogenetic reality of the "Protacanthopterygii". Mol Phylogenet Evol 2003, 27(3):476-488.
  • [45]Lavoue S, Miya M, Saitoh K, Ishiguro NB, Nishida M: Phylogenetic relationships among anchovies, sardines, herrings and their relatives (Clupeiformes), inferred from whole mitogenome sequences. Mol Phylogenet Evol 2007, 43(3):1096-1105.
  • [46]Yamanoue Y, Miya M, Doi H, Mabuchi K, Sakai H, Nishida M: Multiple invasions into freshwater by pufferfishes (teleostei: tetraodontidae): a mitogenomic perspective. PLoS One 2011, 6(2):e17410.
  • [47]Kohany O, Gentles AJ, Hankus L, Jurka J: Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinforma 2006, 7:474. BioMed Central Full Text
  • [48]Barlow M: What antimicrobial resistance has taught us about horizontal gene transfer. Meth Mol Biol 2009, 532:397-411.
  • [49]Andersson JO: Lateral gene transfer in eukaryotes. Cell Mol Life Sci 2005, 62:1-16.
  • [50]Keeling PJ, Palmer JD: Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 2008, 9(8):605-618.
  • [51]Zhaxybayeva O, Doolittle WF: Lateral gene transfer. Curr Biol 2011, 21(7):R242-R246.
  • [52]Raymond JA, Janech MG: Ice-binding proteins from enoki and shiitake mushrooms. Cryobiology 2009, 58(2):151-156.
  • [53]Andersson JO, Sjogren AM, Horner DS, Murphy CA, Dyal PL, Svard SG, Logsdon JM, Ragan MA, Hirt RP, Roger AJ: A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics 2007, 8:51. BioMed Central Full Text
  • [54]Richards TA, Soanes DM, Jones MD, Vasieva O, Leonard G, Paszkiewicz K, Foster PG, Hall N, Talbot NJ: Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc Natl Acad Sci USA 2011, 108(37):15258-15263.
  • [55]Andersson JO: Gene transfer and diversification of microbial eukaryotes. Annu Rev Microbiol 2009, 63:177-193.
  • [56]Dunning Hotopp JC, Clark ME, Oliveira DC, Foster JM, Fischer P, Munoz Torres MC, Giebel JD, Kumar N, Ishmael N, Wang S, et al.: Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 2007, 317(5845):1753-1756.
  • [57]Sinkovics JG: Horizontal gene transfers with or without cell fusions in all categories of the living matter. Adv Exp Med Biol 2011, 714:5-89.
  • [58]Gilbert C, Hernandez SS, Flores-Benabib J, Smith EN, Feschotte C: Rampant Horizontal Transfer of SPIN Transposons in Squamate Reptiles. Mol Biol Evol 2011, 29(2):503-515.
  • [59]Yan SY, Tu M, Yang HY, Mao ZG, Zhao ZY, Fu LJ, Li GS, Huang GP, Li SH, Jin GQ, et al.: Developmental incompatibility between cell nucleus and cytoplasm as revealed by nuclear transplantation experiments in teleost of different families and orders. Int J Dev Biol 1990, 34(2):255-266.
  • [60]Cheng CH, Detrich HW: Molecular ecophysiology of Antarctic notothenioid fishes. Philos Trans R Soc Lond B Biol Sci 2007, 362(1488):2215-2232.
  • [61]Davies PL: Conservation of antifreeze protein-encoding genes in tandem repeats. Gene 1992, 112(2):163-170.
  • [62]Raymond JA: Glycerol is a colligative antifreeze in some northern fishes. J Exp Zool 1992, 262(3):347-352.
  • [63]Driedzic WR, Ewart KV: Control of glycerol production by rainbow smelt (Osmerus mordax) to provide freeze resistance and allow foraging at low winter temperatures. Comp Biochem Physiol B Biochem Mol Biol 2004, 139(3):347-357.
  • [64]Jain R, Rivera MC, Lake JA: Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 1999, 96(7):3801-3806.
  • [65]Johnstone KA, Lubieniecki KP, Chow W, Phillips RB, Koop BF, Davidson WS: Genomic organization and characterization of two vomeronasal 1 receptor-like genes (ora1 and ora2) in Atlantic salmon Salmo salar. Mar Genomics 2008, 1(1):23-31.
  • [66]Huang X, Madan A: CAP3: A DNA sequence assembly program. Genome Res 1999, 9(9):868-877.
  • [67]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
  • [68]Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J: Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol 2010, Chapter 19(Unit 19 10):11-21.
  • [69]Usuka J, Zhu W, Brendel V: Optimal spliced alignment of homologous cDNA to a genomic DNA template. Bioinformatics 2000, 16(3):203-211.
  • [70]Birney E, Clamp M, Durbin R: GeneWise and Genomewise. Genome Res 2004, 14(5):988-995.
  • [71]Stanke M, Steinkamp R, Waack S, Morgenstern B: AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res 2004, 32:W309-W312. (Web Server issue)
  • [72]Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, et al.: Ensembl 2011. Nucleic Acids Res 2011, 39:D800-D806. (Database issue)
  • [73]Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, et al.: The medaka draft genome and insights into vertebrate genome evolution. Nature 2007, 447(7145):714-719.
  • [74]Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, et al.: Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 2002, 297(5585):1301-1310.
  • [75]Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, et al.: Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 2004, 431(7011):946-957.
  • [76]Consortium IHGS: Finishing the euchromatic sequence of the human genome. Nature 2004, 431(7011):931-945.
  • [77]Lewis SE, Searle SM, Harris N, Gibson M, Lyer V, Richter J, Wiel C, Bayraktaroglir L, Birney E, Crosby MA, et al.: Apollo: a sequence annotation editor. Genome Biol 2002, 3(12):RESEARCH0082.
  • [78]Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I: VISTA: computational tools for comparative genomics. Nucleic Acids Res 2004, 32:W273-W279. Web Server issue
  • [79]Korber B: HIV sequence signatures and similarities . In Computational and evolutionary analysis of HIV molecular sequences . Edited by Rodrigo AG, Learn GH. Dordrecht, Netherlands: Kluwer Academic Publishers; 2000:55-72.
  • [80]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 2011, 10:2731-2739.
  文献评价指标  
  下载次数:94次 浏览次数:19次