期刊论文详细信息
BMC Clinical Pharmacology
Suppression of eukaryotic initiation factor 4E prevents chemotherapy-induced alopecia
Jerry Pelletier3  Scott W Lowe7  John A Porco Jr5  Pierre Deslongchamps4  Ragam Somaiah4  Kontham Ravindar4  Jennifer Chu1  Marilene Paquet6  Lukas E Dow2  Zeina Nasr1 
[1] Departments of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada;Memorial Sloan-Kettering Cancer Center, New York, USA;The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3G 1Y6, Canada;Départment de Chimie, Université Laval, Ste-Foy, Quebec G1V 0A6, Canada;Center for Methodology and Library Development, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA;Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2 M2, Canada;Howard Hughes Medical Institute, New York, NY 10065, USA
关键词: Cyclophosphamide;    Genetic engineered mouse model;    Translation initiation;    eIF4A;    eIF4E;    Chemotherapy-induced alopecia;   
Others  :  860488
DOI  :  10.1186/2050-6511-14-58
 received in 2013-08-28, accepted in 2013-11-08,  发布年份 2013
PDF
【 摘 要 】

Background

Chemotherapy-induced hair loss (alopecia) (CIA) is one of the most feared side effects of chemotherapy among cancer patients. There is currently no pharmacological approach to minimize CIA, although one strategy that has been proposed involves protecting normal cells from chemotherapy by transiently inducing cell cycle arrest. Proof-of-concept for this approach, known as cyclotherapy, has been demonstrated in cell culture settings.

Methods

The eukaryotic initiation factor (eIF) 4E is a cap binding protein that stimulates ribosome recruitment to mRNA templates during the initiation phase of translation. Suppression of eIF4E is known to induce cell cycle arrest. Using a novel inducible and reversible transgenic mouse model that enables RNAi-mediated suppression of eIF4E in vivo, we assessed the consequences of temporal eIF4E suppression on CIA.

Results

Our results demonstrate that transient inhibition of eIF4E protects against cyclophosphamide-induced alopecia at the organismal level. At the cellular level, this protection is associated with an accumulation of cells in G1, reduced apoptotic indices, and was phenocopied using small molecule inhibitors targeting the process of translation initiation.

Conclusions

Our data provide a rationale for exploring suppression of translation initiation as an approach to prevent or minimize cyclophosphamide-induced alopecia.

【 授权许可】

   
2013 Nasr et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724184157567.pdf 2679KB PDF download
180KB Image download
636KB Image download
141KB Image download
157KB Image download
633KB Image download
139KB Image download
【 图 表 】

【 参考文献 】
  • [1]de Boer-Dennert M, De Wit R, Schmitz PI, Djontono J, V Beurden V, Stoter G, Verweij J: Patient perceptions of the side-effects of chemotherapy: the influence of 5HT3 antagonists. Br J Cancer 1997, 76(8):1055-1061.
  • [2]Paus R, Haslam IS, Sharov AA, Botchkarev VA: Pathobiology of chemotherapy-induced hair loss. Lancet Oncol 2013, 14(2):e50-59.
  • [3]Cheok CF, Verma CS, Baselga J, Lane DP: Translating p53 into the clinic. Nat Rev Clin Oncol 2011, 8(1):25-37.
  • [4]van Leeuwen IM: Cyclotherapy: opening a therapeutic window in cancer treatment. Oncotarget 2012, 3(6):596-600.
  • [5]Cheok CF, Kua N, Kaldis P, Lane DP: Combination of nutlin-3 and VX-680 selectively targets p53 mutant cells with reversible effects on cells expressing wild-type p53. Cell Death Differ 2010, 17(9):1486-1500.
  • [6]Carvajal D, Tovar C, Yang H, Vu BT, Heimbrook DC, Vassilev LT: Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. Cancer Res 2005, 65(5):1918-1924.
  • [7]Kranz D, Dobbelstein M: Nongenotoxic p53 activation protects cells against S-phase-specific chemotherapy. Cancer Res 2006, 66(21):10274-10280.
  • [8]Tokalov SV, Abolmaali ND: Protection of p53 wild type cells from taxol by nutlin-3 in the combined lung cancer treatment. BMC Cancer 2010, 10:57. BioMed Central Full Text
  • [9]Sur S, Pagliarini R, Bunz F, Rago C, Diaz LA Jr, Kinzler KW, Vogelstein B, Papadopoulos N: A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc Natl Acad Sci USA 2009, 106(10):3964-3969.
  • [10]Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, et al.: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004, 303(5659):844-848.
  • [11]Verma R, Rigatti MJ, Belinsky GS, Godman CA, Giardina C: DNA damage response to the Mdm2 inhibitor nutlin-3. Biochem Pharmacol 2010, 79(4):565-574.
  • [12]Valentine JM, Kumar S, Moumen A: A p53-independent role for the MDM2 antagonist Nutlin-3 in DNA damage response initiation. BMC Cancer 2011, 11:79. BioMed Central Full Text
  • [13]Brenner C, Nakayama N, Goebl M, Tanaka K, Toh-e A, Matsumoto K: CDC33 encodes mRNA cap-binding protein eIF-4E of Saccharomyces cerevisiae. Mol Cell Biol 1988, 8(8):3556-3559.
  • [14]Lin CJ, Nasr Z, Premsrirut PK, Porco JA Jr, Hippo Y, Lowe SW, Pelletier J: Targeting Synthetic Lethal Interactions between Myc and the eIF4F Complex Impedes Tumorigenesis. Cell Rep 2012, 1(4):325-333.
  • [15]Lynch M, Fitzgerald C, Johnston KA, Wang S, Schmidt EV: Activated eIF4E-binding protein slows G1 progression and blocks transformation by c-myc without inhibiting cell growth. J Biol Chem 2004, 279(5):3327-3339.
  • [16]Hinnebusch AG, Lorsch JR: The mechanism of eukaryotic translation initiation: new insights and challenges. In Protein Synthesis and Translational Control. Edited by John WB, Hershey, Nahum S, Michael B. Mathews: Cold Spring Harbor Laboratory Press; 2012:29-53.
  • [17]Malina A, Mills JR, Pelletier J: Emerging therapeutics targeting mRNA translation. In Protein Synthesis and Translational Control. Edited by John WB, Hershey, Nahum S, Michael B. Mathews: Cold Spring Harbor Laboratory Press; 2012:327-343.
  • [18]Premsrirut PK, Dow LE, Kim SY, Camiolo M, Malone CD, Miething C, Scuoppo C, Zuber J, Dickins RA, Kogan SC, et al.: A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 2011, 145(1):145-158.
  • [19]Cencic R, Carrier M, Galicia-Vazquez G, Bordeleau ME, Sukarieh R, Bourdeau A, Brem B, Teodoro JG, Greger H, Tremblay ML, et al.: Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran, silvestrol. PLoS ONE 2009, 4(4):e5223.
  • [20]Paus R, Handjiski B, Eichmuller S, Czarnetzki BM: Chemotherapy-induced alopecia in mice. Induction by cyclophosphamide, inhibition by cyclosporine A, and modulation by dexamethasone. Am J Pathol 1994, 144(4):719-734.
  • [21]Lin CJ, Cencic R, Mills JR, Robert F, Pelletier J: c-Myc and eIF4F are components of a feedforward loop that links transcription and translation. Cancer Res 2008, 68(13):5326-5334.
  • [22]Rousseau D, Kaspar R, Rosenwald I, Gehrke L, Sonenberg N: Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc Natl Acad Sci USA 1996, 93(3):1065-1070.
  • [23]Hendrix S, Handjiski B, Peters EM, Paus R: A guide to assessing damage response pathways of the hair follicle: lessons from cyclophosphamide-induced alopecia in mice. J Invest Dermatol 2005, 125(1):42-51.
  • [24]Rodrigo CM, Cencic R, Roche SP, Pelletier J, Porco JA: Synthesis of rocaglamide hydroxamates and related compounds as eukaryotic translation inhibitors: synthetic and biological studies. J Med Chem 2012, 55(1):558-562.
  • [25]Bordeleau ME, Robert F, Gerard B, Lindqvist L, Chen SM, Wendel HG, Brem B, Greger H, Lowe SW, Porco JA Jr, et al.: Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J Clin Invest 2008, 118(7):2651-2660.
  • [26]Bordeleau M-E, Mori A, Oberer M, Lindqvist L, Chard LS, Higa T, Belsham GJ, Wagner G, Tanaka J, Pelletier J: Functional Characterization of IRESes by an inhibitor of the RNA helicase eIF4A. Nat Chem Biol 2006, 2:213-220.
  • [27]Cencic R, Hall DR, Robert F, Du Y, Min J, Li L, Qui M, Lewis I, Kurtkaya S, Dingledine R, et al.: Reversing chemoresistance by small molecule inhibition of the translation initiation complex eIF4F. Proc Natl Acad Sci USA 2011, 108(3):1046-1051.
  • [28]Wang J, Lu Z, Au JL: Protection against chemotherapy-induced alopecia. Pharm Res 2006, 23(11):2505-2514.
  • [29]Jimenez JJ, Yunis AA: Protection from chemotherapy-induced alopecia by 1,25-dihydroxyvitamin D3. Cancer Res 1992, 52(18):5123-5125.
  • [30]Paus R, Schilli MB, Handjiski B, Menrad A, Henz BM, Plonka P: Topical calcitriol enhances normal hair regrowth but does not prevent chemotherapy-induced alopecia in mice. Cancer Res 1996, 56(19):4438-4443.
  • [31]Schilli MB, Paus R, Menrad A: Reduction of intrafollicular apoptosis in chemotherapy-induced alopecia by topical calcitriol-analogs. J Invest Dermatol 1998, 111(4):598-604.
  • [32]Nasr Z, Robert F, Porco JA Jr, Muller WJ, Pelletier J: eIF4F suppression in breast cancer affects maintenance and progression. Oncogene 2013, 32(7):861-871.
  • [33]Zhou FF, Yan M, Guo GF, Wang F, Qiu HJ, Zheng FM, Zhang Y, Liu Q, Zhu XF, Xia LP: Knockdown of eIF4E suppresses cell growth and migration, enhances chemosensitivity and correlates with increase in Bax/Bcl-2 ratio in triple-negative breast cancer cells. Med Oncol 2011, 28(4):1302-1307.
  • [34]Soni A, Akcakanat A, Singh G, Luyimbazi D, Zheng Y, Kim D, Gonzalez-Angulo A, Meric-Bernstam F: eIF4E knockdown decreases breast cancer cell growth without activating Akt signaling. Mol Cancer Ther 2008, 7(7):1782-1788.
  • [35]Rosenwald IB, Kaspar R, Rousseau D, Gehrke L, Leboulch P, Chen JJ, Schmidt EV, Sonenberg N, London IM: Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J Biol Chem 1995, 270(36):21176-21180.
  • [36]Rosenwald IB, Lazaris-Karatzas A, Sonenberg N, Schmidt EV: Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol 1993, 13(12):7358-7363.
  • [37]Blagosklonny MV, Darzynkiewicz Z: Cyclotherapy: protection of normal cells and unshielding of cancer cells. Cell Cycle 2002, 1(6):375-382.
  • [38]Keyomarsi K, Pardee AB: Selective protection of normal proliferating cells against the toxic effects of chemotherapeutic agents. Prog Cell Cycle Res 2003, 5:527-532.
  • [39]Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S, Cordon-Cardo C, Pelletier J, Lowe SW: Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 2004, 428(6980):332-337.
  • [40]Cencic R, Robert F, Galicia-Vazquez G, Malina A, Ravindar K, Somaiah R, Pierre P, Tanaka J, Deslongchamps P, Pelletier J: Modifying chemotherapy response by targeted inhibition of eukaryotic initiation factor 4A. Blood Cancer J 2013, 3:e128.
  • [41]Robert F, Carrier M, Rawe S, Chen S, Lowe S, Pelletier J: Altering chemosensitivity by modulating translation elongation. PLoS ONE 2009, 4(5):e5428.
  文献评价指标  
  下载次数:38次 浏览次数:29次