期刊论文详细信息
BMC Genomics
Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio)
Xiaowen Sun5  Peng Xu1  Yuanyuan Liu4  Yuanyuan Zhu4  Qiang Li4  Juhua Yu2  Chuangju Li6  Jianxin Feng3  Yan Zhang4  Youyi Kuang5  Yanliang Jiang4  Jiongtang Li4  Xianhu Zheng5  Xiaofeng Zhang5  Zixia Zhao4  Jian Xu4 
[1] Visiting Professor Department of Zoology, College of Science, King Saud University, P. O. Box 24555, Riyadh 11451, Saudi Arabia;Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 430223, China;Henan Academy of Fishery Sciences, Zhengzhou, Henan 450044, China;Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing 100141, China;Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China;Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
关键词: Cyprinidae;    Common carp;    Cyprinus carpio;    Identity by state;    Linkage disequilibrium;    Re-sequencing;    Affymetrix;    SNP array;   
Others  :  1217428
DOI  :  10.1186/1471-2164-15-307
 received in 2013-09-09, accepted in 2014-04-17,  发布年份 2014
PDF
【 摘 要 】

Background

A large number of single nucleotide polymorphisms (SNPs) have been identified in common carp (Cyprinus carpio) but, as yet, no high-throughput genotyping platform is available for this species. C. carpio is an important aquaculture species that accounts for nearly 14% of freshwater aquaculture production worldwide. We have developed an array for C. carpio with 250,000 SNPs and evaluated its performance using samples from various strains of C. carpio.

Results

The SNPs used on the array were selected from two resources: the transcribed sequences from RNA-seq data of four strains of C. carpio, and the genome re-sequencing data of five strains of C. carpio. The 250,000 SNPs on the resulting array are distributed evenly across the reference C.carpio genome with an average spacing of 6.6 kb. To evaluate the SNP array, 1,072 C. carpio samples were collected and tested. Of the 250,000 SNPs on the array, 185,150 (74.06%) were found to be polymorphic sites. Genotyping accuracy was checked using genotyping data from a group of full-siblings and their parents, and over 99.8% of the qualified SNPs were found to be reliable. Analysis of the linkage disequilibrium on all samples and on three domestic C.carpio strains revealed that the latter had the longer haplotype blocks. We also evaluated our SNP array on 80 samples from eight species related to C. carpio, with from 53,526 to 71,984 polymorphic SNPs. An identity by state analysis divided all the samples into three clusters; most of the C. carpio strains formed the largest cluster.

Conclusions

The Carp SNP array described here is the first high-throughput genotyping platform for C. carpio. Our evaluation of this array indicates that it will be valuable for farmed carp and for genetic and population biology studies in C. carpio and related species.

【 授权许可】

   
2014 Xu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150706131722606.pdf 926KB PDF download
Figure 6. 82KB Image download
Figure 5. 70KB Image download
Figure 4. 42KB Image download
Figure 3. 75KB Image download
Figure 2. 50KB Image download
Figure 1. 114KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Fisheries F: Aquaculture Department: The State of World Fisheries and Aquaculture 2006. Rome: Food and Agriculture Organization of the United Nations; 2007.
  • [2]Bostock J, McAndrew B, Richards R, Jauncey K, Telfer T, Lorenzen K, Little D, Ross L, Handisyde N, Gatward I, Corner R: Aquaculture: global status and trends. Philos T R Soc B 2010, 365(1554):2897-2912.
  • [3]Ji P, Zhang Y, Li C, Zhao Z, Wang J, Li J, Xu P, Sun X: High throughput mining and characterization of microsatellites from common carp genome. Int J Mol Sci 2012, 13(8):9798-9807.
  • [4]Zheng X, Kuang Y, Lv W, Cao D, Zhang X, Li C, Lu C, Sun X: A consensus linkage map of common carp (Cyprinus carpio L.) to compare the distribution and variation of QTLs associated with growth traits. Sci China Life Sci 2013, 56(4):351-359.
  • [5]Xu J, Ji P, Zhao Z, Zhang Y, Feng J, Wang J, Li J, Zhang X, Zhao L, Liu G, Xu P, Sun X: Genome-wide SNP discovery from transcriptome of four common carp strains. PLoS One 2012, 7(10):e48140.
  • [6]Kongchum P, Palti Y, Hallerman EM, Hulata G, David L: SNP discovery and development of genetic markers for mapping innate immune response genes in common carp (Cyprinus carpio). Fish Shellfish Immunol 2010, 29(2):356-361.
  • [7]Zhang X, Zhang Y, Zheng X, Kuang Y, Zhao Z, Zhao L, Li C, Jiang L, Cao D, Lu C, Xu P, Sun X: A consensus linkage map provides insights on genome character and evolution in common carp (Cyprinus carpio L.). Mar Biotechnol 2013, 15(3):275-312.
  • [8]Zhao L, Zhang Y, Ji P, Zhang X, Zhao Z, Hou G, Huo L, Liu G, Li C, Xu P, Sun X: A dense genetic linkage map for common carp and its integration with a BAC-based physical map. PLoS One 2013, 8(5):e63928.
  • [9]Wong GK, Liu B, Wang J, Zhang Y, Yang X, Zhang Z, Meng Q, Zhou J, Li D, Zhang J, Ni P, Li S, Ran L, Li H, Li R, Zheng H, Lin W, Li G, Wang X, Zhao W, Li J, Ye C, Dai M, Ruan J, Zhou Y, Li Y, He X, Huang X, Tong W, Chen J, et al.: A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 2004, 432(7018):717-722.
  • [10]Cheng L, Liu L, Yu X, Wang D, Tong J: A linkage map of common carp (Cyprinus carpio) based on AFLP and microsatellite markers. Anim Genet 2010, 41(2):191-198.
  • [11]Liu J, Zhang L, Xu L, Ren H, Lu J, Zhang X, Zhang S, Zhou X, Wei C, Zhao F, Du L: Analysis of copy number variations in the sheep genome using 50 K SNP BeadChip array. BMC Genomics 2013, 14:229. BioMed Central Full Text
  • [12]Zhang Y, Xu P, Lu C, Kuang Y, Zhang X, Cao D, Li C, Chang Y, Hou N, Li H: Genetic linkage mapping and analysis of muscle fiber-related QTLs in common carp (Cyprinus carpio L.). Mar Biotechnol 2011, 13(3):376-392.
  • [13]Xu J, Huang W, Zhong C, Luo D, Li S, Zhu Z, Hu W: Defining global gene expression changes of the hypothalamic-pituitary-gonadal axis in female sGnRH-antisense transgenic common carp (Cyprinus carpio). PLoS One 2011, 6(6):e21057.
  • [14]Williams DR, Li W, Hughes MA, Gonzalez SF, Vernon C, Vidal MC, Jeney Z, Jeney G, Dixon P, McAndrew B, Bartfai R, Orban L, Trudeau V, Rogers J, Matthews L, Fraser EJ, Gracey AY, Cossins AR: Genomic resources and microarrays for the common carp Cyprinus carpio L. J Fish Biol 2008, 72(9):2095-2117.
  • [15]Christoffels A, Bartfai R, Srinivasan H, Komen H, Orban L: Comparative genomics in cyprinids: common carp ESTs help the annotation of the zebrafish genome. BMC Bioinforma 2006, 7(Suppl 5):S2. BioMed Central Full Text
  • [16]Ji P, Liu G, Xu J, Wang X, Li J, Zhao Z, Zhang X, Zhang Y, Xu P, Sun X: Characterization of common carp transcriptome: sequencing, de novo assembly, annotation and comparative genomics. PLoS One 2012, 7(4):e35152.
  • [17]Moens LN, van der Ven K, Van Remortel P, Del‒Favero J, De Coen W: Gene expression analysis of estrogenic compounds in the liver of common carp (Cyprinus carpio) using a custom cDNA microarray. J Biochem Mol Toxicol 2007, 21(5):299-311.
  • [18]Li Y, Xu P, Zhao Z, Wang J, Zhang Y, Sun XW: Construction and characterization of the BAC library for common carp Cyprinus carpio L. and establishment of microsynteny with zebrafish Danio rerio. Mar Biotechnol 2011, 13(4):706-712.
  • [19]Xu P, Li J, Li Y, Cui R, Wang J, Zhang Y, Zhao Z, Sun X: Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences. BMC Genomics 2011, 12:188. BioMed Central Full Text
  • [20]Xu P, Wang J, Wang J, Cui R, Li Y, Zhao Z, Ji P, Zhang Y, Li J, Sun X: Generation of the first BAC-based physical map of the common carp genome. BMC Genomics 2011, 12(1):537. BioMed Central Full Text
  • [21]Mabuchi K, Miya M, Senou H, Suzuki T, Nishida M: Complete mitochondrial DNA sequence of the Lake Biwa wild strain of common carp ( Cyprinus carpio L.): further evidence for an ancient origin. Aquaculture 2006, 257(1):68-77.
  • [22]Mabuchi K, Song H: The complete mitochondrial genome of the Japanese ornamental koi carp (Cyprinus carpio) and its implication for the history of koi. Mitochondrial DNA 2013, 0:1-2.
  • [23]Wang B, Ji P, Wang J, Sun J, Wang C, Xu P, Sun X: The complete mitochondrial genome of the Oujiang color carp, Cyprinus carpio var. color (Cypriniformes, Cyprinidae). Mitochondrial DNA 2013, 24(1):19-21.
  • [24]Henkel CV, Dirks RP, Jansen HJ, Forlenza M, Wiegertjes GF, Howe K, van den Thillart GE, Spaink HP: Comparison of the exomes of common carp (Cyprinus carpio) and zebrafish (Danio rerio). Zebrafish 2012, 9(2):59-67.
  • [25]Sun X, Yu J, Xu P, Wang X, Liu G, Li J, Zhang X, Kuang Y: Towards the Complete Genome: Progress of Common Carp Genome Project. San Diego: Plant and Animal Genome XX; 2012.
  • [26]Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA: Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 2008, 3(10):e3376.
  • [27]Ramos AM, Crooijmans RP, Affara NA, Amaral AJ, Archibald AL, Beever JE, Bendixen C, Churcher C, Clark R, Dehais P, Hansen MS, Hedegaard J, Hu ZL, Kerstens HH, Law AS, Megens HJ, Milan D, Nonneman DJ, Rohrer GA, Rothschild MF, Smith TP, Schnabel RD, Van Tassell CP, Taylor JF, Wiedmann RT, Schook LB, Groenen MA: Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One 2009, 4(8):e6524.
  • [28]Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP, O’Connell J, Moore SS, Smith TP, Sonstegard TS, Van Tassell CP: Development and characterization of a high density SNP genotyping assay for cattle. PLoS One 2009, 4(4):e5350.
  • [29]Groenen M, Megens H-J, Zare Y, Warren W, Hillier L, Crooijmans R, Vereijken A, Okimoto R, Muir W, Cheng H: The development and characterization of a 60 K SNP chip for chicken. BMC Genomics 2011, 12(1):274. BioMed Central Full Text
  • [30]Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, Talbot R, Pirani A, Brew F, Kaiser P, Hocking PM, Fife M, Salmon N, Fulton J, Strom TM, Haberer G, Weigend S, Preisinger R, Gholami M, Qanbari S, Simianer H, Watson KA, Woolliams JA, Burt DW: Development of a high density 600 K SNP genotyping array for chicken. BMC Genomics 2013, 14:59. BioMed Central Full Text
  • [31]Meurs KM, Mauceli E, Lahmers S, Acland GM, White SN, Lindblad-Toh K: Genome-wide association identifies a deletion in the 3′ untranslated region of striatin in a canine model of arrhythmogenic right ventricular cardiomyopathy. Hum Genet 2010, 128(3):315-324.
  • [32]McCue ME, Bannasch DL, Petersen JL, Gurr J, Bailey E, Binns MM, Distl O, Guerin G, Hasegawa T, Hill EW, Leeb T, Lindgren G, Penedo MC, Roed KH, Ryder OA, Swinburne JE, Tozaki T, Valberg SJ, Vaudin M, Lindblad-Toh K, Wade CM, Mickelson JR: A high density SNP array for the domestic horse and extant Perissodactyla: utility for association mapping, genetic diversity, and phylogeny studies. PLoS Genet 2012, 8(1):e1002451.
  • [33]Utsunomiya YT, Perez O’Brien AM, Sonstegard TS, Van Tassell CP, Do Carmo AS, Meszaros G, Solkner J, Garcia JF: Detecting loci under recent positive selection in dairy and beef cattle by combining different genome-wide scan methods. PLoS One 2013, 8(5):e64280.
  • [34]Boitard S, Rocha D: Detection of signatures of selective sweeps in the Blonde d’Aquitaine cattle breed. Anim Genet 2013, 44(5):579-583.
  • [35]Bourret V, Kent MP, Primmer CR, Vasemägi A, Karlsson S, Hindar K, McGinnity P, Verspoor E, Bernatchez L, Lien S: SNP‒array reveals genome‒wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon (Salmo salar). Mol Ecol 2013, 22(3):532-551.
  • [36]Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Blocker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, MacLeod JN, Penedo MC, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guerin G: Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 2009, 326(5954):865-867.
  • [37]Houston RD, Taggart JB, Cezard T, Bekaert M, Lowe NR, Downing A, Talbot R, Bishop SC, Archibald AL, Bron JE, Penman DJ, Davassi A, Brew F, Tinch AE, Gharbi K, Hamilton A: Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genomics 2014, 15:90. BioMed Central Full Text
  • [38]Liu S, Sun L, Li Y, Sun F, Jiang Y, Zhang Y, Zhang J, Feng J, Kaltenboeck L, Kucuktas H: Development of the catfish 250 K SNP array for genome-wide association studies. BMC Res Notes 2014, 7:135. BioMed Central Full Text
  • [39]Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA: A map of human genome variation from population-scale sequencing. Nature 2010, 467(7319):1061-1073.
  • [40]Pemberton TJ, Absher D, Feldman MW, Myers RM, Rosenberg NA, Li JZ: Genomic patterns of homozygosity in worldwide human populations. Am J Hum Genet 2012, 91(2):275-292.
  • [41]Tarazona-Santos E, Tishkoff SA: Divergent patterns of linkage disequilibrium and haplotype structure across global populations at the interleukin-13 (IL13) locus. Genes Immunity 2005, 6(1):53-65.
  • [42]Shifman S, Kuypers J, Kokoris M, Yakir B, Darvasi A: Linkage disequilibrium patterns of the human genome across populations. Hum Mol Genet 2003, 12(7):771-776.
  • [43]Van Inghelandt D, Reif JC, Dhillon BS, Flament P, Melchinger AE: Extent and genome-wide distribution of linkage disequilibrium in commercial maize germplasm. Theor Appl Genet 2011, 123(1):11-20.
  • [44]Boyko AR: The domestic dog: man’s best friend in the genomic era. Genome Biol 2011, 12(2):216. BioMed Central Full Text
  • [45]Laurie CC, Nickerson DA, Anderson AD, Weir BS, Livingston RJ, Dean MD, Smith KL, Schadt EE, Nachman MW: Linkage disequilibrium in wild mice. PLoS Genet 2007, 3(8):e144.
  • [46]R W, S P, E T, J H, K W, J B: Genomic selection using low density marker panels with application to a sire line in pigs. Genet Sel Evol 2013, 45:28. BioMed Central Full Text
  • [47]Khatkar MS, Moser G, Hayes BJ, Raadsma HW: Strategies and utility of imputed SNP genotypes for genomic analysis in dairy cattle. BMC Genomics 2012, 13:538. BioMed Central Full Text
  • [48]Finlay EK, Berry DP, Wickham B, Gormley EP, Bradley DG: A genome wide association scan of bovine tuberculosis susceptibility in Holstein-Friesian dairy cattle. PLoS One 2012, 7(2):e30545.
  • [49]Kim BY, Jin HJ, Kim JY: Genome-wide association analysis of Sasang constitution in the Korean population. J Altern Complement Med 2012, 18(3):262-269.
  • [50]He S, Liu H, Chen Y, Kuwahara M, Nakajima T, Zhong Y: Molecular phylogenetic relationships of Eastern Asian Cyprinidae (pisces: cypriniformes) inferred from cytochrome b sequences. Sci China C Life Sci 2004, 47(2):130-138.
  • [51]He S, Mayden RL, Wang X, Wang W, Tang KL, Chen WJ, Chen Y: Molecular phylogenetics of the family Cyprinidae (Actinopterygii: Cypriniformes) as evidenced by sequence variation in the first intron of S7 ribosomal protein-coding gene: further evidence from a nuclear gene of the systematic chaos in the family. Mol Phylogenet Evol 2008, 46(3):818-829.
  • [52]Wang X, Li J, He S: Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei: Cypriniformes) derived from the nuclear recombination activating gene 2 sequences. Mol Phylogenet Evol 2007, 42(1):157-170.
  • [53]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.
  • [54]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [55]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007, 81(3):559-575.
  • [56]Boichard D, Chung H, Dassonneville R, David X, Eggen A, Fritz S, Gietzen KJ, Hayes BJ, Lawley CT, Sonstegard TS, Van Tassell CP, VanRaden PM, Viaud-Martinez KA, Wiggans GR: Design of a bovine low-density SNP array optimized for imputation. PLoS One 2012, 7(3):e34130.
  文献评价指标  
  下载次数:24次 浏览次数:11次