期刊论文详细信息
BMC Genetics
Iron and hepcidin as risk factors in atherosclerosis: what do the genes say?
Sita H. Vermeulen7  Dorine W. Swinkels7  John B. Whitfield2  Beben Benyamin2  Suzanne Holewijn4  Jacqueline de Graaf5  Martin den Heijer1  Lambertus A. L. M. Kiemeney7  Stephen Burgess6  Luc L. Janss3  Tessel E. Galesloot7 
[1]Department of Internal Medicine, VU Medical Centre, Amsterdam, The Netherlands
[2]QIMR Berghofer Medical Research Institute, Brisbane 4029, Queensland, Australia
[3]Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
[4]Research Vascular Center Rijnstate, Arnhem, The Netherlands
[5]Department of General Internal Medicine, Division of Vascular Medicine, Radboud university medical center, Nijmegen, The Netherlands
[6]Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
[7]Radboud university medical center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
关键词: Mendelian randomization;    General population;    Cardiovascular disease;    Atherosclerosis;    Iron;    Hepcidin;   
Others  :  1219404
DOI  :  10.1186/s12863-015-0246-4
 received in 2015-04-13, accepted in 2015-06-30,  发布年份 2015
PDF
【 摘 要 】

Background

Previous reports suggested a role for iron and hepcidin in atherosclerosis. Here, we evaluated the causality of these associations from a genetic perspective via (i) a Mendelian randomization (MR) approach, (ii) study of association of atherosclerosis-related single nucleotide polymorphisms (SNPs) with iron and hepcidin, and (iii) estimation of genomic correlations between hepcidin, iron and atherosclerosis.

Results

Analyses were performed in a general population sample. Iron parameters (serum iron, serum ferritin, total iron-binding capacity and transferrin saturation), serum hepcidin and genome-wide SNP data were available for N = 1,819; non-invasive measurements of atherosclerosis (NIMA), i.e., presence of plaque, intima media thickness and ankle-brachial index (ABI), for N = 549. For the MR, we used 12 iron-related SNPs that were previously identified in a genome-wide association meta-analysis on iron status, and assessed associations of individual SNPs and quartiles of a multi-SNP score with NIMA. Quartile 4 versus quartile 1 of the multi-SNP score showed directionally consistent associations with the hypothesized direction of effect for all NIMA in women, indicating that increased body iron status is a risk factor for atherosclerosis in women. We observed no single SNP associations that fit the hypothesized directions of effect between iron and NIMA, except for rs651007, associated with decreased ferritin concentration and decreased atherosclerosis risk. Two of six NIMA-related SNPs showed association with the ratio hepcidin/ferritin, suggesting that an increased hepcidin/ferritin ratio increases atherosclerosis risk. Genomic correlations were close to zero, except for hepcidin and ferritin with ABI at rest [−0.27 (SE 0.34) and −0.22 (SE 0.35), respectively] and ABI after exercise [−0.29 (SE 0.34) and −0.30 (0.35), respectively]. The negative sign indicates an increased atherosclerosis risk with increased hepcidin and ferritin concentrations.

Conclusions

Our results suggest a potential causal role for hepcidin and ferritin in atherosclerosis, and may indicate that iron status is causally related to atherosclerosis in women.

【 授权许可】

   
2015 Galesloot et al.

【 预 览 】
附件列表
Files Size Format View
20150717010909141.pdf 586KB PDF download
Figure 1. 36KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Sullivan JL. Iron and the sex difference in heart disease risk. Lancet. 1981; 1:1293-4.
  • [2]Lapenna D, Pierdomenico SD, Ciofani G, Ucchino S, Neri M, Giamberardino M et al.. Association of body iron stores with low molecular weight iron and oxidant damage of human atherosclerotic plaques. Free Radic Biol Med. 2007; 42:492-8.
  • [3]Kraml PJ, Klein RL, Huang Y, Nareika A, Lopes-Virella MF. Iron loading increases cholesterol accumulation and macrophage scavenger receptor I expression in THP-1 mononuclear phagocytes. Metabolism. 2005; 54:453-9.
  • [4]Kiechl S, Willeit J, Egger G, Poewe W, Oberhollenzer F. Body iron stores and the risk of carotid atherosclerosis: prospective results from the Bruneck study. Circulation. 1997; 96:3300-7.
  • [5]Salonen JT, Tuomainen TP, Salonen R, Lakka TA, Nyyssönen K. Donation of blood is associated with reduced risk of myocardial infarction. The Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Epidemiol. 1998; 148:445-51.
  • [6]Meyers DG, Jensen KC, Menitove JE. A historical cohort study of the effect of lowering body iron through blood donation on incident cardiac events. Transfusion. 2002; 42:1135-9.
  • [7]Meyers DG, Strickland D, Maloley PA, Seburg JK, Wilson JE, McManus BF. Possible association of a reduction in cardiovascular events with blood donation. Heart. 1997; 78:188-93.
  • [8]Ascherio A, Rimm EB, Giovannucci E, Willett WC, Stampfer MJ. Blood donations and risk of coronary heart disease in men. Circulation. 2001; 103:52-7.
  • [9]Zheng H, Cable R, Spencer B, Votto N, Katz SD. Iron stores and vascular function in voluntary blood donors. Arterioscler Thromb Vasc Biol. 2005; 25:1577-83.
  • [10]Engberink MF, Geleijnse JM, Durga J, Swinkels DW, de Kort WL, Schouten EG et al.. Blood donation, body iron status and carotid intima-media thickness. Atherosclerosis. 2008; 196:856-62.
  • [11]Peffer K, den Heijer M, Holewijn S, de Graaf J, Swinkels DW, Verbeek AL et al.. The effect of frequent whole blood donation on ferritin, hepcidin, and subclinical atherosclerosis. Transfusion. 2012; 53:1468-74.
  • [12]Grammer TB, Kleber ME, Silbernagel G, Pilz S, Scharnagl H, Tomaschitz A et al.. Hemoglobin, iron metabolism and angiographic coronary artery disease (The Ludwigshafen Risk and Cardiovascular Health Study). Atherosclerosis. 2014; 236:292-300.
  • [13]Roy CN, Mak HH, Akpan I, Losyev G, Zurakowski D, Andrews NC. Hepcidin antimicrobial peptide transgenic mice exhibit features of the anemia of inflammation. Blood. 2007; 109:4038-44.
  • [14]Sullivan JL. Macrophage iron, hepcidin, and atherosclerotic plaque stability. Exp Biol Med. 2007; 232:1014-20.
  • [15]Galesloot TE, Holewijn S, Kiemeney LA, de Graaf J, Vermeulen SH, Swinkels DW. Serum hepcidin is associated with presence of plaque in postmenopausal women of a general population. Arterioscler Thromb Vasc Biol. 2014; 34:446-56.
  • [16]Smith GD, Ebrahim S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003; 32:1-22.
  • [17]Benyamin B, Ferreira MA, Willemsen G, Gordon S, Middelberg RP, McEvoy BP et al.. Common variants in TMPRSS6 are associated with iron status and erythrocyte volume. Nat Genet. 2009; 41:1173-5.
  • [18]Benyamin B, McRae AF, Zhu G, Gordon S, Henders AK, Palotie A et al.. Variants in TF and HFE explain approximately 40 % of genetic variation in serum-transferrin levels. Am J Hum Genet. 2009; 84:60-5.
  • [19]Tanaka T, Roy CN, Yao W, Matteini A, Semba RD, Arking D et al.. A genome-wide association analysis of serum iron concentrations. Blood. 2010; 115:94-6.
  • [20]Pichler I, Minelli C, Sanna S, Tanaka T, Schwienbacher C, Naitza S et al.. Identification of a common variant in the TFR2 gene implicated in the physiological regulation of serum iron levels. Hum Mol Genet. 2011; 20:1232-40.
  • [21]McLaren CE, Garner CP, Constantine CC, McLachlan S, Vulpe CD, Snively BM et al.. Genome-wide association study identifies genetic loci associated with iron deficiency. PLoS One. 2011; 6: Article ID e17390
  • [22]Oexle K, Ried JS, Hicks AA, Tanaka T, Hayward C, Bruegel M et al.. Novel association to the proprotein convertase PCSK7 gene locus revealed by analysing soluble transferrin receptor (sTfR) levels. Hum Mol Genet. 2011; 20:1042-7.
  • [23]Benyamin B, Esko T, Ried JS, Radhakrishnan A, Vermeulen SH, Traglia M et al.. Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis. Nat Commun. 2014; 5:4926.
  • [24]Traglia M, Girelli D, Biino G, Campostrini N, Corbella M, Sala C et al.. Association of HFE and TMPRSS6 genetic variants with iron and erythrocyte parameters is only in part dependent on serum hepcidin concentrations. J Med Genet. 2011; 48:629-34.
  • [25]Galesloot TE, Geurts-Moespot AJ, den Heijer M, Sweep FC, Fleming RE, Kiemeney LA et al.. Associations of common variants in HFE and TMPRSS6 with iron parameters are independent of serum hepcidin in a general population: a replication study. J Med Genet. 2013; 50:593-8.
  • [26]Bis JC, Kavousi M, Franceschini N, Isaacs A, Abecasis GR, Schminke U et al.. Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque. Nat Genet. 2011; 43:940-7.
  • [27]Murabito JM, White CC, Kavousi M, Sun YV, Feitosa MF, Nambi V et al.. Association between chromosome 9p21 variants and the ankle-brachial index identified by a meta-analysis of 21 genome-wide association studies. Circ Cardiovasc Genet. 2012; 5:100-12.
  • [28]Hoogendoorn EH, Hermus AR, de Vegt F, Ross HA, Verbeek AL, Kiemeney LA et al.. Thyroid function and prevalence of anti-thyroperoxidase antibodies in a population with borderline sufficient iodine intake: influences of age and sex. Clin Chem. 2006; 52:104-11.
  • [29]Kiemeney LA, Thorlacius S, Sulem P, Geller F, Aben KK, Stacey SN et al.. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet. 2008; 40:1307-12.
  • [30]Galesloot TE, Vermeulen SH, Geurts-Moespot AJ, Klaver SM, Kroot JJ, van Tienoven D et al.. Serum hepcidin: reference ranges and biochemical correlates in the general population. Blood. 2011; 117:e218-25.
  • [31]Kroot JJ, Laarakkers CM, Geurts-Moespot AJ, Grebenchtchikov N, Pickkers P, van Ede AE et al.. Immunochemical and mass-spectrometry-based serum hepcidin assays for iron metabolism disorders. Clin Chem. 2010; 56:1570-9.
  • [32]Holewijn S, den Heijer M, Swinkels DW, Stalenhoef AF, de Graaf J. The metabolic syndrome and its traits as risk factors for subclinical atherosclerosis. J Clin Endocrinol Metab. 2009; 94:2893-9.
  • [33]Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009; 5: Article ID e1000529
  • [34]Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011; 88:76-82.
  • [35]Janss L, de Los CG, Sheehan N, Sorensen D. Inferences from genomic models in stratified populations. Genetics. 2012; 192:693-704.
  • [36]Lee SH, Yang J, Goddard ME, Visscher PM, Wray NR. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics. 2012; 28:2540-2.
  • [37]Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM et al.. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013; 45:984-94.
  • [38]Visscher PM, Hemani G, Vinkhuyzen AA, Chen GB, Lee SH, Wray NR et al.. Statistical power to detect genetic (co)variance of complex traits using SNP data in unrelated samples. PLoS Genet. 2014; 10: Article ID e1004269
  • [39]Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR et al.. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010; 42:565-9.
  • [40]Bouwman AC, Valente BD, Janss LL, Bovenhuis H, Rosa GJ. Exploring causal networks of bovine milk fatty acids in a multivariate mixed model context. Genet Sel Evol. 2014; 46:2. BioMed Central Full Text
  • [41]Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and fit. J Royal Stat Soc: Ser B (Stat Methodol). 2002; 64:583-639.
  • [42]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al.. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81:559-75.
  • [43]Palmer TM, Lawlor DA, Harbord RM, Sheehan NA, Tobias JH, Timpson NJ et al.. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Methods Med Res. 2012; 21:223-42.
  • [44]Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int J Epidemiol. 2011; 40:740-52.
  • [45]Conde L, Bevan S, Sitzer M, Klopp N, Illig T, Thiery J et al.. Novel associations for coronary artery disease derived from genome wide association studies are not associated with increased carotid intima-media thickness, suggesting they do not act via early atherosclerosis or vessel remodeling. Atherosclerosis. 2012; 219:684-9.
  • [46]Slavin TP, Feng T, Schnell A, Zhu X, Elston RC. Two-marker association tests yield new disease associations for coronary artery disease and hypertension. Hum Genet. 2011; 130:725-33.
  • [47]Zhu X, Feng T, Li Y, Lu Q, Elston RC. Detecting rare variants for complex traits using family and unrelated data. Genet Epidemiol. 2010; 34:171-87.
  • [48]Sullivan JL. Do hemochromatosis mutations protect against iron-mediated atherogenesis? Circ Cardiovasc Genet. 2009; 2:652-7.
  • [49]Kautz L, Gabayan V, Wang X, Wu J, Onwuzurike J, Jung G et al.. Testing the iron hypothesis in a mouse model of atherosclerosis. Cell Rep. 2013; 5:1436-42.
  • [50]Saeed O, Otsuka F, Polavarapu R, Karmali V, Weiss D, Davis T et al.. Pharmacological suppression of hepcidin increases macrophage cholesterol efflux and reduces foam cell formation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2012; 32:299-307.
  • [51]Li JJ, Meng X, Si HP, Zhang C, Lv HX, Zhao YX et al.. Hepcidin destabilizes atherosclerotic plaque via overactivating macrophages after erythrophagocytosis. Arterioscler Thromb Vasc Biol. 2012; 32:1158-66.
  • [52]Burgess S. Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. Int J Epidemiol. 2014; 43:922-9.
  • [53]Oexle K, Schormair B, Ried JS, Czamara D, Heim K, Frauscher B et al.. Dilution of candidates: the case of iron-related genes in restless legs syndrome. Eur J Hum Genet. 2013; 21:410-4.
  • [54]Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, Dupuis J et al.. Common variants at 10 genomic loci influence hemoglobin A(1)(C) levels via glycemic and nonglycemic pathways. Diabetes. 2010; 59:3229-39.
  • [55]Kullo IJ, Ding K, Jouni H, Smith CY, Chute CG. A genome-wide association study of red blood cell traits using the electronic medical record. PLoS One. 2010; 5: Article ID e13011
  • [56]Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S et al.. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013; 45:1274-83.
  文献评价指标  
  下载次数:20次 浏览次数:27次