期刊论文详细信息
BMC Structural Biology
Crystal structures of the human Dysferlin inner DysF domain
Nicholas H Keep3  Christine Orengo1  Corin Yeats2  Ambrose R Cole3  Altin Sula3 
[1] Structural & Molecular Biology, Darwin Building, Institute for Structural and Molecular Biology , University College London, Gower Street, London WC1E 6BT, UK;Current Address: Infectious Disease Epidemiology, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK;Crystallography, Biological Sciences, Institute for Structural and Molecular Biology, Birkbeck University of London, Malet Street, London WC1E 7HX, UK
关键词: Crystal structure;    DysF domain;    Arginine-tryptophan stacking;    Limb girdle muscular dystrophy 2B;    Dysferlin;   
Others  :  1090956
DOI  :  10.1186/1472-6807-14-3
 received in 2013-11-12, accepted in 2014-01-15,  发布年份 2014
PDF
【 摘 要 】

Background

Mutations in dysferlin, the first protein linked with the cell membrane repair mechanism, causes a group of muscular dystrophies called dysferlinopathies. Dysferlin is a type two-anchored membrane protein, with a single C terminal trans-membrane helix, and most of the protein lying in cytoplasm. Dysferlin contains several C2 domains and two DysF domains which are nested one inside the other. Many pathogenic point mutations fall in the DysF domain region.

Results

We describe the crystal structure of the human dysferlin inner DysF domain with a resolution of 1.9 Ångstroms. Most of the pathogenic mutations are part of aromatic/arginine stacks that hold the domain in a folded conformation. The high resolution of the structure show that these interactions are a mixture of parallel ring/guanadinium stacking, perpendicular H bond stacking and aliphatic chain packing.

Conclusions

The high resolution structure of the Dysferlin DysF domain gives a template on which to interpret in detail the pathogenic mutations that lead to disease.

【 授权许可】

   
2014 Sula et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128164518608.pdf 2473KB PDF download
Figure 4. 110KB Image download
Figure 3. 126KB Image download
Figure 2. 154KB Image download
Figure 1. 100KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Bashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z, et al.: A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet 1998, 20:37-42.
  • [2]Liu J, Aoki M, Illa I, Wu C, Fardeau M, Angelini C, Serrano C, Urtizberea JA, Hentati F, Hamida MB, et al.: Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 1998, 20:31-36.
  • [3]Illa I, Serrano-Munuera C, Gallardo E, Lasa A, Rojas-García R, Palmer J, Gallano P, Baiget M, Matsuda C, Brown RH: Distal anterior compartment myopathy: a dysferlin mutation causing a new muscular dystrophy phenotype. Ann Neurol 2001, 49:130-134.
  • [4]Bansal D, Miyake K, Vogel SS, Groh S, Chen CC, Williamson R, McNeil PL, Campbell KP: Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 2003, 423:168-172.
  • [5]Bansal D, Campbell KP: Dysferlin and the plasma membrane repair in muscular dystrophy. Trends Cell Biol 2004, 14:206-213.
  • [6]Lek A, Evesson FJ, Sutton RB, North KN, Cooper ST: Ferlins: regulators of vesicle fusion for auditory neurotransmission, receptor trafficking and membrane repair. Traffic 2012, 13:185-194.
  • [7]Lek A, Lek M, North KN, Cooper ST: Phylogenetic analysis of ferlin genes reveals ancient eukaryotic origins. BMC Evolutionary Biology 2010, 10:231. BioMed Central Full Text
  • [8]Cuff AL, Sillitoe I, Lewis T, Clegg AB, Rentzsch R, Furnham N, Pellegrini-Calace M, Jones D, Thornton J, Orengo CA: Extending CATH: increasing coverage of the protein structure universe and linking structure with function. Nucleic Acids Res 2011, 39:D420-D426.
  • [9]Letunic I, Doerks T, Bork P: SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 2012, 40:D302-D305.
  • [10]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, et al.: The Pfam protein families database. Nucleic Acids Res 2012, 40:D290-D301.
  • [11]Davis DB, Doherty KR, Delmonte AJ, McNally EM: Calcium-sensitive phospholipid binding properties of normal and mutant ferlin C2 domains. J Biol Chem 2002, 277:22883-22888.
  • [12]Therrien C, Di Fulvio S, Pickles S, Sinnreich M: Characterization of lipid binding specificities of dysferlin C2 domains reveals vovel interactions with phosphoinositides. Biochemistry 2009, 48:2377-2384.
  • [13]Xu L, Pallikkuth S, Hou Z, Mignery GA, Robia SL, Han R: Dysferlin forms a dimer mediated by the C2 domains and the transmembrane domain in vitro and in living cells. PloS one 2011, 6:e27884-e27884.
  • [14]Fuson K, Rice A, Mahling R, Snow A, Nayak K, Shanbhogue P, Meyer Austin G, Redpath GMI, Hinderliter A, Cooper ST, Sutton RB: Alternate Splicing of Dysferlin C2A Confers Ca2+-Dependent and Ca2+-Independent Binding for Membrane Repair. Structure 2014. In press
  • [15]Aartsma-Rus A, Van Deutekom JCT, Fokkema IF, Van Ommen GJB, Den Dunnen JT: Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 2006, 34:135-144.
  • [16]Leiden muscular dystrophy database dysferlin sequence variants http://www.dmd.nl/dysf_seqvar.html webcite
  • [17]Ponting CP, Mott R, Bork P, Copley RR: Novel protein domains and repeats in Drosophila melanogaster: insights into structure, function, and evolution. Genome Res 2001, 11:1996-2008.
  • [18]Patel P, Harris R, Geddes SM, Strehle EM, Watson JD, Bashir R, Bushby K, Driscoll PC, Keep NH: Solution structure of the inner DysF domain of myoferlin and implications for limb girdle muscular dystrophy type 2b. J Mol Biol 2008, 379:981-990.
  • [19]McNicholas S, Potterton E, Wilson KS, Noble MEM: Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr 2011, 67:386-394.
  • [20]Doreleijers JF, da Silva AWS, Krieger E, Nabuurs SB, Spronk C, Stevens TJ, Vranken WF, Vriend G, Vuister GW: CING: an integrated residue-based structure validation program suite. Journal of Biomolecular Nmr 2012, 54:267-283.
  • [21]CING database RMS Data for 2k2o http://nmr.cmbi.ru.nl/NRG-CING/data/k2/2k2o/2k2o.cing/2k2o/Cing/2k2o_01_cv_rms.png webcite
  • [22]Krissinel E, Henrick K: Inference of macromolecular assemblies from crystalline state. J Mol Biol 2007, 372:774-797.
  • [23]Flocco MM, Mowbray SL: Planar stacking interactions of arginine and aromatic side-chains in proteins. J Mol Biol 1994, 235:709-717.
  • [24]Ma JC, Dougherty DA: The cation-pi interaction. Chem Rev 1997, 97:1303-1324.
  • [25]Singh J, Thornton JM: Atlas of Protein Side-Chain Interactions. Oxford: IRL Press; 1992.
  • [26]Atlas of side chain interactions http://www.ebi.ac.uk/thornton-srv/databases/sidechains webcite
  • [27]Li AJ, Nussinov R: A set of van der Waals and Coulombic radii of protein atoms for molecular and solvent-accessible surface calculation, packing evaluation, and docking. Proteins-Structure Function and Genetics 1998, 32:111-127.
  • [28]Cagliani R, Fortunato F, Giorda R, Rodolico C, Bonaglia MC, Sironi M, D'Angelo MG, Prelle A, Locatelli F, Toscano A, et al.: Molecular analysis of LGMD-2B and MM patients: identification of novel DYSF mutations and possible founder effect in the Italian population. Neuromuscul Disord 2003, 13:788-795.
  • [29]Cagliani R, Magri F, Toscano A, Merlini L, Fortunato F, Lamperti C, Rodolico C, Prelle A, Sironi M, Aguennouz M, et al.: Mutation finding in patients with dysferlin deficiency and role of the dysferlin interacting proteins annexin A1 and A2 in muscular dystrophies. Hum Mutat 2005, 26:283.
  • [30]Guglieri M, Magri F, D'Angelo MG, Prelle A, Morandi L, Rodolico C, Cagliani R, Mora M, Fortunato F, Bordoni A, et al.: Clinical, molecular, and protein correlations in a large sample of genetically diagnosed Italian limb girdle muscular dystrophy patients. Hum Mutat 2008, 29:258-266.
  • [31]Kawabe K, Goto K, Nishino I, Angelini C, Hayashi YK: Dysferlin mutation analysis in a group of Italian patients with limb-girdle muscular dystrophy and Miyoshi myopathy. Eur J Neurol 2004, 11:657-661.
  • [32]Klinge L, Aboumousa A, Eagle M, Hudson J, Sarkozy A, Vita G, Charlton R, Roberts M, Straub V, Barresi R, et al.: New aspects on patients affected by dysferlin deficient muscular dystrophy. J Neurol Neurosurg Psychiatry 2010, 81:946-953.
  • [33]de Luna N, Gallardo E, Soriano M, Dominguez-Perles R, de la Torre C, Rojas-Garcia R, Garcia-Verdugo JM, Illa I: Absence of dysferlin alters myogenin expression and delays human muscle differentiation "in vitro". J Biol Chem 2006, 281:17092-17098.
  • [34]Fanin M, Nascimbeni AC, Angelini C: Muscle protein analysis in the detection of heterozygotes for recessive limb girdle muscular dystrophy type 2B and 2E. Neuromuscul Disord 2006, 16:792-799.
  • [35]Kesari A, Fukuda M, Knoblach S, Bashir R, Nader GA, Rao D, Nagaraju K, Hoffman EP: Dysferlin deficiency shows compensatory induction of Rab27A/Slp2a that may contribute to inflammatory onset. Am J Pathol 2008, 173:1476-1487.
  • [36]Cho HJ, Sung DH, Kim EJ, Yoon CH, Ki CS, Kim JW: Clinical and genetic analysis of Korean patients with Miyoshi myopathy: identification of three novel mutations in the DYSF gene. J Korean Med Sci 2006, 21:724-727.
  • [37]Hattori H, Nagata E, Oya Y, Takahashi T, Aoki M, Ito D, Suzuki N: A novel compound heterozygous dysferlin mutation in Miyoshi myopathy siblings responding to dantrolene. Eur J Neurol 2007, 14:1288-1291.
  • [38]Tagawa K, Ogawa M, Kawabe K, Yamanaka G, Matsumura T, Goto K, Nonaka I, Nishino I, Hayashi YK: Protein and gene analyses of dysferlinopathy in a large group of Japanese muscular dystrophy patients. J Neurol Sci 2003, 211:23-28.
  • [39]Takahashi T, Aoki M, Tateyama M, Kondo E, Mizuno T, Onodera Y, Takano R, Kawai H, Kamakura K, Mochizuki H, et al.: Dysferlin mutations in Japanese Miyoshi myopathy: relationship to phenotype. Neurology 2003, 60:1799-1804.
  • [40]Matsuda C, Hayashi YK, Ogawa M, Aoki M, Murayama K, Nishino I, Nonaka I, Arahata K, Brown RH: The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle. Hum Mol Genet 2001, 10:1761-1766.
  • [41]Rosales XQ, Gastier-Foster JM, Lewis S, Vinod M, Thrush DL, Astbury C, Pyatt R, Reshmi S, Sahenk Z, Mendell JR: Novel diagnostic features of dysferlinopathies. Muscle Nerve 2010, 42:14-21.
  • [42]Krahn M, Wein N, Lostal W, Bourg-Alibert N, Nguyen K, Courrier S, Vial C, Labelle V, De Petris D, Borges A, et al.: Partial functionality of a mini-dysferlin molecule identified in a patient affected with moderately severe primary dysferlinopathy. Neuromuscul Disord 2008, 18:781-781.
  • [43]Nagaraju K, Rawat R, Veszelovszky E, Thapliyal R, Kesari A, Sparks S, Raben N, Plotz P, Hoffman EP: Dysferlin deficiency enhances monocyte phagocytosis: a model for the inflammatory onset of limb-girdle muscular dystrophy 2B. Am J Pathol 2008, 172:774-785.
  • [44]de Luna N, Gallardo E, Soriano M, Dominguez-Perles R, de la Torre C, Rojas-Garcia R, Garcia-Verdugo JM, Illa I: Absence of dysferlin alters myogenin expression and delays human muscle differentiation 'in vitro'. Neuromuscul Disord 2006, 16:S57-S57.
  • [45]Nguyen K, Bassez G, Eymard B, Levy N, Pouget J: Phenotypic and genetic analysis in a series of 55 patients with dysferlinopathy. Neurology 2005, 64:A413-A414.
  • [46]Aoki M, Takahashi T: Mutational and clinical features of Japanese patients with dysferlinopathy (Miyoshi myopathy and limb girdle muscular dystrophy type 2B). Rinsho shinkeigaku = Clinical neurology 2005, 45:938-942.
  • [47]Valdar WS: Scoring residue conservation. Proteins 2002, 48:227-241.
  • [48]Savitsky P, Bray J, Cooper CD, Marsden BD, Mahajan P, Burgess-Brown NA, Gileadi O: High-throughput production of human proteins for crystallization: the SGC experience. J Struct Biol 2010, 172:3-13.
  • [49]Newman J, Egan D, Walter TS, Meged R, Berry I, Ben Jelloul M, Sussman JL, Stuart DI, Perrakis A: Towards rationalization of crystallization screening for small- to medium-sized academic laboratories: the PACT/JCSG+ strategy. Acta Crystallogr D Biol Crystallogr 2005, 61:1426-1431.
  • [50]Kabsch W: XDS. Acta Crystallogr D Biol Crystallogr 2010, 66:125-132.
  • [51]Evans PR: An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallographica Section D-Biological Crystallography 2011, 67:282-292.
  • [52]Keegan RM, Winn MD: MrBUMP: an automated pipeline for molecular replacement. Acta Crystallographica Section D-Biological Crystallography 2008, 64:119-124.
  • [53]Emsley P, Lohkamp B, Scott WG, Cowtan K: Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010, 66:486-501.
  • [54]Murshudov GN, Vagin AA, Dodson EJ: Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 1997, 53:240-255.
  • [55]Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, et al.: PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 2010, 66:213-221.
  文献评价指标  
  下载次数:57次 浏览次数:7次