期刊论文详细信息
BMC Genomics
Cotton fiber elongation network revealed by expression profiling of longer fiber lines introgressed with different Gossypium barbadense chromosome segments
Tianzhen Zhang1  Peng Wang1  Sen Wang1  Jiedan Chen1  Xinghe Li1  Ruiping Tian1  Lei Fang1 
[1] National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
关键词: Transcriptome;    Metabolic pathway analysis;    Functional enrichment;    Fiber length;    DEG;    CSIL;   
Others  :  1139339
DOI  :  10.1186/1471-2164-15-838
 received in 2014-02-12, accepted in 2014-09-24,  发布年份 2014
PDF
【 摘 要 】

Background

Cotton fiber, a highly elongated, thickened single cell of the seed epidermis, is a powerful cell wall research model. Fiber length, largely determined during the elongation stage, is a key property of fiber quality. Several studies using expressed sequence tags and microarray analysis have identified transcripts that accumulate preferentially during fiber elongation. To further show the mechanism of fiber elongation, we used Digital Gene Expression Tag Profiling to compare transcriptome data from longer fiber chromosome introgressed lines (CSILs) containing segments of various Gossypium barbadense chromosomes with data from its recurrent parent TM-1 during fiber elongation (from 5 DPA to 20 DPA).

Results

A large number of differentially expressed genes (DEGs) involved in carbohydrate, fatty acid and secondary metabolism, particularly cell wall biosynthesis, were highly upregulated during the fiber elongation stage, as determined by functional enrichment and pathway analysis. Furthermore, DEGs related to hormone responses and transcription factors showed upregulated expression levels in the CSILs. Moreover, metabolic and regulatory network analysis indicated that the same pathways were differentially altered, and distinct pathways exhibited altered gene expression, in the CSILs. Interestingly, mining of upregulated DEGs in the introgressed segments of these CSILs based on D-genome sequence data showed that these lines were enriched in glucuronosyltransferase, inositol-1, 4, 5-trisphosphate 3-kinase and desulfoglucosinolate sulfotransferase activity. These results were similar to the results of transcriptome analysis.

Conclusions

This report provides an integrative network about the molecular mechanisms controlling fiber length, which are mainly tied to carbohydrate metabolism, cell wall biosynthesis, fatty acid metabolism, secondary metabolism, hormone responses and Transcription factors. The results of this study provide new insights into the critical factors associated with cell elongation and will facilitate further research aimed at understanding the mechanisms underlying cotton fiber elongation.

【 授权许可】

   
2014 Fang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150321094947556.pdf 3132KB PDF download
Figure 7. 112KB Image download
Figure 6. 100KB Image download
Figure 5. 117KB Image download
Figure 4. 87KB Image download
Figure 3. 62KB Image download
Figure 2. 147KB Image download
Figure 1. 140KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Arpat AB, Waugh M, Sullivan JP, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing RA, Wilkins TA: Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol 2004, 54(6):911-929.
  • [2]Wilkins TA, Arpat AB: The cotton fiber transcriptome. Physiol Plantarum 2005, 124(3):295-300.
  • [3]Basara AS, Malik CP: Development of cotton fiber. Inter Rev Cyto 1984, 89:65-113.
  • [4]Haigler TA, Jernstedt JA: Molecular genetics of developing cotton fibers. In Cotton Fibers. Edited by Basra AM. New York: Hawthorne Press; 1999.
  • [5]Kim HJ, Triplett BA: Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 2001, 127(4):1361-1366.
  • [6]Lee JJ, Hassan OS, Gao W, Wei NE, Kohel RJ, Chen XY, Payton P, Sze SH, Stelly DM, Chen ZJ: Developmental and gene expression analyses of a cotton naked seed mutant. Planta 2006, 223(3):418-432.
  • [7]Lee JJ, Woodward AW, Chen ZJ: Gene expression changes and early events in cotton fibre development. Ann Bot-London 2007, 100(7):1391-1401.
  • [8]Ji S, Lu Y, Li J, Wei G, Liang X, Zhu Y: A beta-tubulin-like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast. Biochem Bioph Res Co 2002, 296(5):1245-1250.
  • [9]John ME, Keller G: Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci U S A 1996, 93(23):12768-12773.
  • [10]Samuel Yang S, Cheung F, Lee JJ, Ha M, Wei NE, Sze SH, Stelly DM, Thaxton P, Triplett B, Town CD, Jeffrey Chen Z: Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 2006, 47(5):761-775.
  • [11]Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX: Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 2006, 18(3):651-664.
  • [12]Tu LL, Zhang XL, Liang SG, Liu DQ, Zhu LF, Zeng FC, Nie YC, Guo XP, Deng FL, Tan JF, Xu L: Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development. Plant Cell Rep 2007, 26(8):1309-1320.
  • [13]Liu K, Sun J, Yao LY, Yuan YL: Transcriptome analysis reveals critical genes and key pathways for early cotton fiber elongation in Ligon lintless-1 mutant. Genomics 2012, 100(1):42-50.
  • [14]Naoumkina M, Hinchliffe DJ, Turley RB, Bland JM, Fang DD: Integrated metabolomics and genomics analysis provides new insights into the fiber elongation process in Ligon lintless-2 mutant cotton (Gossypium hirsutum L.). BMC Genomics 2013, 14:155. BioMed Central Full Text
  • [15]Wu Y, Machado AC, White RG, Llewellyn DJ, Dennis ES: Expression profiling identifies genes expressed early during lint fibre initiation in cotton. Plant Cell Physiol 2006, 47(1):107-127.
  • [16]Guan XY, Chen ZJ: Auxin boost for cotton. Nat Biotechnol 2011, 29:407-409.
  • [17]Zhang M, Zheng X, Song S, Zeng Q, Hou L, Li D, Zhao J, Wei Y, Li X, Luo M, Xiao Y, Luo X, Zhang J, Xiang C, Pei Y: Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol 2011, 29(5):453-458.
  • [18]Luo M, Xiao Y, Li X, Lu X, Deng W, Li D, Hou L, Hu M, Li Y, Pei Y: GhDET2, a steroid 5 alpha-reductase, plays an important role in cotton fiber cell initiation and elongation. Plant J 2007, 51(3):419-430.
  • [19]Sun Y, Veerabomma S, Abdel-Mageed HA, Fokar M, Asami T, Yoshida S, Allen RD: Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol 2005, 46(8):1384-1391.
  • [20]Gou JY, Wang LJ, Chen SP, Hu WL, Chen XY: Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res 2007, 17(5):422-434.
  • [21]Pang CY, Wang H, Pang Y, Xu C, Jiao Y, Qin YM, Western TL, Yu SX, Zhu YX: Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics 2010, 9(9):2019-2033.
  • [22]Padmalatha KV, Patil DP, Kumar K, Dhandapani G, Kanakachari M, Phanindra ML, Kumar S, Mohan TC, Jain N, Prakash AH, Vamadevaiah H, Katageri IS, Leelavathi S, Reddy MK, Kumar PA, Reddy VS: Functional genomics of fuzzless-lintless mutant of Gossypium hirsutum L. cv. MCU5 reveal key genes and pathways involved in cotton fibre initiation and elongation. BMC Genomics 2012, 13:624. BioMed Central Full Text
  • [23]Lee J, Burns TH, Light G, Sun Y, Fokar M, Kasukabe Y, Fujisawa K, Maekawa Y, Allen RD: Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation. Planta 2010, 232(5):1191-1205.
  • [24]Li XB, Cai L, Cheng NH, Liu JW: Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiol 2002, 130(2):666-674.
  • [25]Li XB, Fan XP, Wang XL, Cai L, Yang WC: The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 2005, 17(3):859-875.
  • [26]Wang J, Wang HY, Zhao PM, Han LB, Jiao GL, Zheng YY, Huang SJ, Xia GX: Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers. Plant Cell Physiol 2010, 51(8):1276-1290.
  • [27]Guan X, Lee JJ, Pang M, Shi X, Stelly DM, Chen ZJ: Activation of Arabidopsis seed hair development by cotton fiber-related genes. PLoS One 2011, 6(7):e21301.
  • [28]Machado A, Wu Y, Yang Y, Llewellyn DJ, Dennis ES: The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant J 2009, 59(1):52-62.
  • [29]Walford SA, Wu Y, Llewellyn DJ, Dennis ES: GhMYB25-like: a key factor in early cotton fibre development. Plant J 2011, 65(5):785-797.
  • [30]Wang P, Ding YZ, Lu QX, Guo WZ, Zhang TZ: Development of Gossypium barbadense chromosome segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum. Chinese Sci Bull 2008, 53(10):1512-1517.
  • [31]Eshed Y, Zamir D: An introgression line population of lycopersicon pennellii In the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 1995, 141(3):1147-1162.
  • [32]Liu SB, Zhou RG, Dong YC, Li P, Jia JZ: Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet 2006, 112(7):1360-1373.
  • [33]Takai T, Nonoue Y, Yamamoto SI, Yamanouchi U, Matsubara K, Liang ZW, Lin HX, Ono N, Uga Y, Yano M: Development of chromosome segment substitution lines derived from backcross between indica donor rice cultivar ‘Nona bokra’ and japonica recipient cultivar ‘Koshihikari’. Breeding Sci 2007, 57(3):257-261.
  • [34]Zhu W, Lin J, Yang D, Zhao L, Zhang Y, Zhu Z, Chen T, Wang C: Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, Indica recipient 93-11 and Japonica donor nipponbare. Plant Mol Biol Rep 2009, 27(2):126-131.
  • [35]Kohel R, Richmond T, Lewis C: Texas marker-1. Description of a genetic standard for Gossypium hirsutum L. Crop Sci 1970, 10(6):670-671.
  • [36]Pan J, Zhang T, Kuai B: Studies on the inheritance of resistance to Verticillium dahliae in cotton. J Nanj Agr Univ 1994, 17:8-18.
  • [37]Wang P, Zhu Y, Song X, Cao Z, Ding Y, Liu B, Zhu X, Wang S, Guo W, Zhang T: Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theor Appl Genet 2012, 124(8):1415-1428.
  • [38]Jiang JX, Zhang TZ: Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. Cotton Sci 2003, 15:166-167.
  • [39]Wang QQ, Liu F, Chen XS, Ma XJ, Zeng HQ, Yang ZM: Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics 2010, 96(6):369-376.
  • [40]Benjamini Y, Yekutieli D: The control of the false discovery rate in multiple testing under dependency. Ann Stat 2001, 29:1165-1188.
  • [41]Herrero J, Valencia A, Dopazo J: A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 2001, 17(2):126-136.
  • [42]Klie S, Nikoloski Z: The choice between mapman and gene ontology for automated gene function prediction in plant science. Front Genet 2012, 3:115.
  • [43]Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y: KEGG for linking genomes to life and the environment. Nucleic Acids Res 2008, 36(Database issue):D480-D484.
  • [44]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Aacids Res 2001, 29(9):e45.
  • [45]Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin DC, Llewellyn D, Showmaker KC, Shu SQ, Udall J, Yoo MJ, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee TH, Li J, Lin L, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E, et al.: Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 2012, 492(7429):423-427.
  • [46]Ji SJ, Lu YC, Feng JX, Wei G, Li J, Shi YH, Fu Q, Liu D, Luo JC, Zhu YX: Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res 2003, 31(10):2534-2543.
  • [47]Li A, Xia T, Xu W, Chen TT, Li XL, Fan J, Wang RY, Feng SQ, Wang YT, Wang BR, Peng L: An integrative analysis of four CESA isoforms specific for fiber cellulose production between Gossypium hirsutum and Gossypium barbadense. Planta 2013, 237(6):1585-1597.
  • [48]Li YH, Qian O, Zhou YH, Yan MX, Sun L, Zhang M, Fu ZM, Wang YH, Han B, Pang XM, Chen M, Li J: BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell 2003, 15(9):2020-2031.
  • [49]Roudier F, Fernandez AG, Fujita M, Himmelspach R, Borner GHH, Schindelman G, Song S, Baskin TI, Dupree P, Wasteneys GO, Benfey PN: COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. The Plant Cell 2005, 17(6):1749-1763.
  • [50]Wang H, Guo Y, Lv F, Zhu H, Wu S, Jiang Y, Li F, Zhou B, Guo W, Zhang T: The essential role of GhPEL gene, encoding a pectate lyase, in cell wall loosening by depolymerization of the de-esterified pectin during fiber elongation in cotton. Plant Mol Biol 2010, 72(4–5):397-406.
  • [51]Huang GQ, Gong SY, Xu WL, Li W, Li P, Zhang CJ, Li DD, Zheng Y, Li FG, Li XB: A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton. Plant Physiol 2013, 161(3):1278-1290.
  • [52]Harmer SE, Orford SJ, Timmis JN: Characterisation of six alpha-expansin genes in Gossypium hirsutum (upland cotton). Mol Gen Genet 2002, 268(1):1-9.
  • [53]Zhao P-M, Wang L-L, Han L-B, Wang J, Yao Y, Wang H-Y, Du X-M, Luo Y-M, Xia G-X: Proteomic identification of differentially expressed proteins in the Ligon lintless mutant of upland cotton (Gossypium hirsutum L.). J Proteome Res 2009, 9(2):1076-1087.
  • [54]Kende H, Bradford K, Brummell D, Cho HT, Cosgrove D, Fleming A, Gehring C, Lee Y, McQueen-Mason S, Rose J, Voesenek LA: Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 2004, 55(3):311-314.
  • [55]Marga F, Grandbois M, Cosgrove DJ, Baskin TI: Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy. Plant J 2005, 43(2):181-190.
  • [56]Marsolais F, Sebastia CH, Rousseau A, Varin L: Molecular and biochemical characterization of BNST4, an ethanol-inducible steroid sulfotransferase from Brassica napus, and regulation of BNST genes by chemical stress and during development. Plant Sci 2004, 166(5):1359-1370.
  • [57]Rouleau M, Marsolais F, Richard M, Nicolle L, Voigt B, Adam G, Varin L: Inactivation of brassinosteroid biological activity by a salicylate-inducible steroid sulfotransferase from Brassica napus. J Biol Chem 1999, 274(30):20925-20930.
  • [58]Varin L, Marsolais F, Richard M, Rouleau M: Sulfation and sulfotransferases 6: Biochemistry and molecular biology of plant sulfotransferases. FASEB J 1997, 11(7):517-525.
  • [59]Taliercio EW, Boykin D: Analysis of gene expression in cotton fiber initials. BMC plant biol 2007, 7:22. BioMed Central Full Text
  • [60]Qin YM, Hu CY, Pang Y, Kastaniotis AJ, Hiltunen JK, Zhu YX: Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 2007, 19(11):3692-3704.
  • [61]Qin YM, Pujol FM, Shi YH, Feng JX, Liu YM, Kastaniotis AJ, Hiltunen JK, Zhu YX: Cloning and functional characterization of two cDNAs encoding NADPH-dependent 3-ketoacyl-CoA reductased from developing cotton fibers. Cell Res 2005, 15(6):465-473.
  • [62]Troncoso-Ponce MA, Kilaru A, Cao X, Durrett TP, Fan JL, Jensen JK, Thrower NA, Pauly M, Wilkerson C, Ohlrogge JB: Comparative deep transcriptional profiling of four developing oilseeds. Plant J 2011, 68(6):1014-1027.
  • [63]Boerjan W, Ralph J, Baucher M: Lignin biosynthesis. Annu Rev Plant Biol 2003, 54:519-546.
  • [64]Al-Ghazi Y, Bourot S, Arioli T, Dennis ES, Llewellyn DJ: Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiber quality. Plant Cell Physiol 2009, 2009(50):1364-1381.
  • [65]He XC, Qin YM, Xu Y, Hu CY, Zhu YX: Molecular cloning, expression profiling, and yeast complementation of 19 beta-tubulin cDNAs from developing cotton ovules. J Exp Bot 2008, 59(10):2687-2695.
  • [66]Loguerico LL, Zhang JQ, Wilkins TA: Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Mol Gen Genet 1999, 261(4-5):660-671.
  • [67]Pu L, Li Q, Fan XP, Yang WC, Xue YB: The R2R3 MYB Transcription Factor GhMYB109 Is Required for Cotton Fiber Development. Genetics 2008, 180(2):811-820.
  • [68]Suo J, Liang X, Pu L, Zhang Y, Xue Y: Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochim Biophys Acta 2003, 1630(1):25-34.
  • [69]Parre E, Geitmann A: More than a leak sealant. The mechanical properties of callose in pollen tubes. Plant Physiol 2005, 37:274-286.
  文献评价指标  
  下载次数:43次 浏览次数:22次