期刊论文详细信息
BMC Microbiology
Pyrosequencing-based analysis reveals a novel capsular gene cluster in a KPC-producing Klebsiella pneumoniae clinical isolate identified in Brazil
Marisa Fabiana Nicolás2  Ana Cristina Gales3  Ana Tereza R Vasconcelos2  Alexandra L Gerber2  Luiz Gonzaga P Almeida2  Luiz Fernando Goda Zuleta2  Marsileni Pelisson1  Eliana Carolina Vespero1  Renata Cristina Picão3  Pablo Ivan Pereira Ramos2 
[1] Departamento de Patologia Clínica, Análises Clínicas e Toxicologia, Universidade Estadual de Londrina, Londrina, Brazil;Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Rio de Janeiro, Brazil;Laboratório ALERTA, Divisão de Doenças Infecciosas, Universidade Federal de São Paulo, São Paulo, Brazil
关键词: Monosaccharide biosynthesis pathways;    Molecular serotyping;    KPC-producing K. pneumoniae;    K-antigen;    Capsular polysaccharide;    Capsular gene cluster;   
Others  :  1221791
DOI  :  10.1186/1471-2180-12-173
 received in 2012-02-08, accepted in 2012-05-23,  发布年份 2012
PDF
【 摘 要 】

Background

An important virulence factor of Klebsiella pneumoniae is the production of capsular polysaccharide (CPS), a thick mucus layer that allows for evasion of the host's defense and creates a barrier against antibacterial peptides. CPS production is driven mostly by the expression of genes located in a locus called cps, and the resulting structure is used to distinguish between different serotypes (K types). In this study, we report the unique genetic organization of the cps cluster from K. pneumoniae Kp13, a clinical isolate recovered during a large outbreak of nosocomial infections that occurred in a Brazilian teaching hospital.

Results

A pyrosequencing-based approach showed that the cps region of Kp13 (cpsKp13) is 26.4 kbp in length and contains genes common, although not universal, to other strains, such as the rmlBADC operon that codes for L-rhamnose synthesis. cpsKp13 also presents some unique features, like the inversion of the wzy gene and a unique repertoire of glycosyltransferases. In silico comparison of cpsKp13 RFLP pattern with 102 previously published cps PCR-RFLP patterns showed that cpsKp13 is distinct from the C patterns of all other K serotypes. Furthermore, in vitro serotyping showed only a weak reaction with capsular types K9 and K34. We confirm that K9 cps shares common genes with cpsKp13 such as the rmlBADC operon, but lacks features like uge and Kp13-specific glycosyltransferases, while K34 capsules contain three of the five sugars that potentially form the Kp13 CPS.

Conclusions

We report the first description of a cps cluster from a Brazilian clinical isolate of a KPC-producing K. pneumoniae. The gathered data including K-serotyping support that Kp13’s K-antigen belongs to a novel capsular serotype. The CPS of Kp13 probably includes L-rhamnose and D-galacturonate in its structure, among other residues. Because genes involved in L-rhamnose biosynthesis are absent in humans, this pathway may represent potential targets for the development of antimicrobial agents. Studying the capsular serotypes of clinical isolates is of great importance for further development of vaccines and/or novel therapeutic agents. The distribution of K-types among multidrug-resistant isolates is unknown, but our findings may encourage scientists to perform K-antigen typing of KPC-producing strains worldwide.

【 授权许可】

   
2012 Ramos et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150803191646856.pdf 550KB PDF download
Figure 4. 12KB Image download
Figure 3. 54KB Image download
Figure 2. 168KB Image download
Figure 1. 31KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Podschun R, Ullmann U: Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998, 11:589-603.
  • [2]Nordmann P, Cuzon G, Naas T: The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 2009, 9:228-236.
  • [3]Greenberger MJ, Kunkel SL, Strieter RM, Lukacs NW, Bramson J, Gauldie J, Graham FL, Hitt M, Danforth JM, Standiford TJ: IL-12 gene therapy protects mice in lethal Klebsiella pneumonia. J Immunol 1996, 157:3006-3012.
  • [4]Standiford TJ, Wilkowski JM, Sisson TH, Hattori N, Mehrad B, Bucknell KA, Moore TA: Intrapulmonary tumor necrosis factor gene therapy increases bacterial clearance and survival in murine gram-negative pneumonia. Hum Gene Ther 1999, 10:899-909.
  • [5]Ye P, Garvey PB, Zhang P, Nelson S, Bagby G, Summer WR, Schwarzenberger P, Shellito JE, Kolls JK: Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. Am J Respir Cell Mol Biol 2001, 25:335-340.
  • [6]Tumbarello M, Spanu T, Sanguinetti M, Citton R, Montuori E, Leone F, Fadda G, Cauda R: Bloodstream infections caused by extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae: risk factors, molecular epidemiology, and clinical outcome. Antimicrob Agents Chemother 2006, 50:498-504.
  • [7]Roberts IS: The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 1996, 50:285-315.
  • [8]Sahly H, Keisari Y, Crouch E, Sharon N, Ofek I: Recognition of bacterial surface polysaccharides by lectins of the innate immune system and its contribution to defense against infection: the case of pulmonary pathogens. Infect Immun 2008, 76:1322-1332.
  • [9]Rahn A, Drummelsmith J, Whitfield C: Conserved organization in the cps gene clusters for expression of Escherichia coli group 1 K antigens: relationship to the colanic acid biosynthesis locus and the cps genes from Klebsiella pneumoniae. J Bacteriol 1999, 181:2307-2313.
  • [10]Whitfield C, Roberts IS: Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 1999, 31:1307-1319.
  • [11]Whitfield C, Paiment A: Biosynthesis and assembly of Group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr Res 2003, 338:2491-2502.
  • [12]Whitfield C: Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 2006, 75:39-68.
  • [13]Arakawa Y, Wacharotayankun R, Nagatsuka T, Ito H, Kato N, Ohta M: Genomic organization of the Klebsiella pneumoniae cps region responsible for serotype K2 capsular polysaccharide synthesis in the virulent strain Chedid. J Bacteriol 1995, 177:1788-1796.
  • [14]Pan YJ, Fang HC, Yang HC, Lin TL, Hsieh PF, Tsai FC, Keynan Y, Wang JT: Capsular polysaccharide synthesis regions in Klebsiella pneumoniae serotype K57 and a new capsular serotype. J Clin Microbiol 2008, 46:2231-2240.
  • [15]Shu HY, Fung CP, Liu YM, Wu KM, Chen YT, Li LH, Liu TT, Kirby R, Tsai SF: Genetic diversity of capsular polysaccharide biosynthesis in Klebsiella pneumoniae clinical isolates. Microbiology 2009, 155:4170-4183.
  • [16]Fevre C, Passet V, Deletoile A, Barbe V, Frangeul L, Almeida AS, Sansonetti P, Tournebize R, Brisse S: PCR-based identification of Klebsiella pneumoniae subsp. rhinoscleromatis, the agent of rhinoscleroma. PLoS Negl Trop Dis 2011, 5:e1052.
  • [17]Ho JY, Lin TL, Li CY, Lee A, Cheng AN, Chen MC, Wu SH, Wang JT, Li TL, Tsai MD: Functions of some capsular polysaccharide biosynthetic genes in Klebsiella pneumoniae NTUH K-2044. PLoS One 2011, 6:e21664.
  • [18]Regue M, Hita B, Pique N, Izquierdo L, Merino S, Fresno S, Benedi VJ, Tomas JM: A gene, uge, is essential for Klebsiella pneumoniae virulence. Infect Immun 2004, 72:54-61.
  • [19]Giraud MF, Naismith JH: The rhamnose pathway. Curr Opin Struct Biol 2000, 10:687-696.
  • [20]Rahn A, Beis K, Naismith JH, Whitfield C: A novel outer membrane protein, Wzi, is involved in surface assembly of the Escherichia coli K30 group 1 capsule. J Bacteriol 2003, 185:5882-5890.
  • [21]Lin MH, Hsu TL, Lin SY, Pan YJ, Jan JT, Wang JT, Khoo KH, Wu SH: Phosphoproteomics of Klebsiella pneumoniae NTUH-K2044 reveals a tight link between tyrosine phosphorylation and virulence. Mol Cell Proteomics 2009, 8:2613-2623.
  • [22]Cuthbertson L, Mainprize IL, Naismith JH, Whitfield C: Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiol Mol Biol Rev 2009, 73:155-177.
  • [23]Marolda CL, Li B, Lung M, Yang M, Hanuszkiewicz A, Rosales AR, Valvano MA: Membrane topology and identification of critical amino acid residues in the Wzx O-antigen translocase from Escherichia coli O157:H4. J Bacteriol 2010, 192:6160-6171.
  • [24]Nakhamchik A, Wilde C, Rowe-Magnus DA: Identification of a Wzy polymerase required for group IV capsular polysaccharide and lipopolysaccharide biosynthesis in Vibrio vulnificus. Infect Immun 2007, 75:5550-5558.
  • [25]Coutinho PM, Deleury E, Davies GJ, Henrissat B: An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 2003, 328:307-317.
  • [26]Liu J, Mushegian A: Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci 2003, 12:1418-1431.
  • [27]Hurtado-Guerrero R, Zusman T, Pathak S, Ibrahim AF, Shepherd S, Prescott A, Segal G, van Aalten DM: Molecular mechanism of elongation factor 1A inhibition by a Legionella pneumophila glycosyltransferase. Biochem J 2010, 426:281-292.
  • [28]Unligil UM, Rini JM: Glycosyltransferase structure and mechanism. Curr Opin Struct Biol 2000, 10:510-517.
  • [29]Brisse S, Issenhuth-Jeanjean S, Grimont PA: Molecular serotyping of Klebsiella species isolates by restriction of the amplified capsular antigen gene cluster. J Clin Microbiol 2004, 42:3388-3398.
  • [30]Murcia A, Rubin SJ: Reproducibility of an indirect immunofluorescent-antibody technique for capsular serotyping of Klebsiella pneumoniae. J Clin Microbiol 1979, 9:208-213.
  • [31]Lindberg B, Lonngren J, Thompson JL: Structural studies of the Klebsiella type 9 capsular polysaccharide. Carbohydr Res 1972, 25:49-57.
  • [32]Joseleau JP, Michon F, Vignon M: Structural investigation of the capsular polysaccharide from Klebsiella serotype K-34 and its characterization by N.M.R. spectroscopy. Carbohydr Res 1982, 101:175-185.
  • [33]Wehland M, Bernhard F: The RcsAB box. Characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. J Biol Chem 2000, 275:7013-7020.
  • [34]Nakhamchik A, Wilde C, Chong H, Rowe-Magnus DA: Evidence for the horizontal transfer of an unusual capsular polysaccharide biosynthesis locus in marine bacteria. Infect Immun 2010, 78:5214-5222.
  • [35]Bailey MJ, Hughes C, Koronakis V: In vitro recruitment of the RfaH regulatory protein into a specialised transcription complex, directed by the nucleic acid ops element. Mol Gen Genet 2000, 262:1052-1059.
  • [36]Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D: ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol 2011, 8:11-13.
  • [37]Hawley DK, McClure WR: Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 1983, 11:2237-2255.
  • [38]Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing. 21th informational supplement. Clinical and Laboratory Standards, Wayne, Pa; 2011.
  • [39]Woodford N, Tierno PM, Young K, Tysall L, Palepou MF, Ward E, Painter RE, Suber DF, Shungu D, Silver LL, Inglima K, Kornblum J, Livermore DM: Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A beta-lactamase, KPC-3, in a New York Medical Center. Antimicrob Agents Chemother 2004, 48:4793-4799.
  • [40]Almeida LG, Paixao R, Souza RC, Costa GC, Barrientos FJ, Santos MT, Almeida DF, Vasconcelos AT: A System for Automated Bacterial (genome) Integrated Annotation–SABIA. Bioinformatics 2004, 20:2832-2833.
  • [41]Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS: PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010, 26:1608-1615.
  • [42]Krogh A, Larsson B, von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001, 305:567-580.
  • [43]Jones DT: Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999, 292:195-202.
  • [44]Sullivan MJ, Petty NK, Beatson SA: Easyfig: a genome comparison visualizer. Bioinformatics 2011, 27:1009-1010.
  • [45]Coimbra RS, Artiguenave F, Jacques LS, Oliveira GC: MST (molecular serotyping tool): a program for computer-assisted molecular identification of Escherichia coli and Shigella O antigens. J Clin Microbiol 2010, 48:1921-1923.
  • [46]Coimbra RS, Grimont F, Grimont PA: Identification of Shigella serotypes by restriction of amplified O-antigen gene cluster. Res Microbiol 1999, 150:543-553.
  • [47]Coimbra RS, Grimont F, Lenormand P, Burguiere P, Beutin L, Grimont PA: Identification of Escherichia coli O-serogroups by restriction of the amplified O-antigen gene cluster (rfb-RFLP). Res Microbiol 2000, 151:639-654.
  • [48]Felsenstein J: PHYLIP - Phylogeny Inference Package (version 3.2). Cladistics 1989, 5:164-166.
  • [49]Hansen DS, Skov R, Benedi JV, Sperling V, Kolmos HJ: Klebsiella typing: pulsed-field gel electrophoresis (PFGE) in comparison with O:K-serotyping. Clin Microbiol Infect 2002, 8:397-404.
  文献评价指标  
  下载次数:113次 浏览次数:46次