期刊论文详细信息
BMC Evolutionary Biology
Molecular decay of enamel matrix protein genes in turtles and other edentulous amniotes
Mark S Springer1  John Gatesy1  Robert W Meredith2 
[1] Department of Biology, University of California, Riverside, CA 92521, USA;Current address: Department of Biology and Molecular Biology, Montclair State University, Montclair, NJ, 07043, USA
关键词: Testudines;    Pseudogenes;    Enamelin;    Enamel matrix protein genes;    Amelogenin;    Ameloblastin;   
Others  :  1130097
DOI  :  10.1186/1471-2148-13-20
 received in 2012-10-30, accepted in 2013-01-16,  发布年份 2013
PDF
【 摘 要 】

Background

Secondary edentulism (toothlessness) has evolved on multiple occasions in amniotes including several mammalian lineages (pangolins, anteaters, baleen whales), birds, and turtles. All edentulous amniote clades have evolved from ancestors with enamel-capped teeth. Previous studies have documented the molecular decay of tooth-specific genes in edentulous mammals, all of which lost their teeth in the Cenozoic, and birds, which lost their teeth in the Cretaceous. By contrast with mammals and birds, tooth loss in turtles occurred in the Jurassic (201.6-145.5 Ma), providing an extended time window for tooth gene degradation in this clade. The release of the painted turtle and Chinese softshell turtle genomes provides an opportunity to recover the decayed remains of tooth-specific genes in Testudines.

Results

We queried available genomes of Testudines (Chrysemys picta [painted turtle], Pelodiscus sinensis [Chinese softshell turtle]), Aves (Anas platyrhynchos [duck], Gallus gallus [chicken], Meleagris gallopavo [turkey], Melopsittacus undulatus [budgerigar], Taeniopygia guttata [zebra finch]), and enamelless mammals (Orycteropus afer [aardvark], Choloepus hoffmanni [Hoffmann’s two-toed sloth], Dasypus novemcinctus [nine-banded armadillo]) for remnants of three enamel matrix protein (EMP) genes with putative enamel-specific functions. Remnants of the AMBN and ENAM genes were recovered in Chrysemys and retain their original synteny. Remnants of AMEL were recovered in both testudines, although there are no shared frameshifts. We also show that there are inactivated copies of AMBN, AMEL and ENAM in representatives of divergent avian lineages including Galloanserae, Passeriformes, and Psittaciformes, and that there are shared frameshift mutations in all three genes that predate the basal split in Neognathae. Among enamelless mammals, all three EMP genes exhibit inactivating mutations in Orycteropus and Choloepus.

Conclusions

Our results highlight the power of combining fossil and genomic evidence to decipher macroevolutionary transitions and characterize the functional range of different loci involved in tooth development. The fossil record and phylogenetics combine to predict the occurrence of molecular fossils of tooth-specific genes in the genomes of edentulous amniotes, and in every case these molecular fossils have been discovered. The widespread occurrence of EMP pseudogenes in turtles, birds, and edentulous/enamelless mammals also provides compelling evidence that in amniotes, the only unique, non-redundant function of these genes is in enamel formation.

【 授权许可】

   
2013 Meredith et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150226163106472.pdf 384KB PDF download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Deméré TA, McGowen MR, Berta A, Gatesy J: Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Syst Biol 2008, 57:15-37.
  • [2]Meredith RW, Gatesy J, Murphy WJ, Ryder OA, Springer MS: Molecular decay of the tooth gene enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals. PLoS Genet 2009, 5:e1000634.
  • [3]Meredith RW, Gatesy J, Cheng J, Springer MS: Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales. Proc R Soc B 2011, 278:993-1002.
  • [4]Scarel-Caminaga RM, Pasetto S, da Silva ER, Peres RCR: Genes and tooth development: reviewing the structure and function of some key players. Braz J Oral Sci 2003, 2:339-347.
  • [5]Chai Y, Maxson RE Jr: Recent advances in craniofacial morphogenesis. Dev Dynamics 2006, 235:2353-2375.
  • [6]Thesleff I: The genetic basis of tooth development and dental defects. Am J Med Gen 2006, 140A:2530-2535.
  • [7]Kapadia H, Mues G, D’Sousa R: Genes affecting tooth morphogenesis. Orthod Craniofacial Res 2007, 10:105-113.
  • [8]Bei M: Molecular genetics of tooth development. Curr Opin Gen Dev 2009, 19:504-510.
  • [9]Catón J, Tucker AS: Current knowledge of tooth development: patterning and mineralization of the murine dentition. J Anat 2009, 214:502-515.
  • [10]Fleischmannova J, Matalova E, Tucker AS, Sharpe PT: Mouse models of tooth abnormalities. Eur J Oral Sci 2008, 116:1-10.
  • [11]Snead ML, Lau EC, Zeichner-David M, Fincham AG, Woo SLC, Slavkin HC: DNA sequence for cloned cDNA for murine amelogenin reveal the amino acid sequence for enamel-specific protein. Biochem Biophys Res Comm 1985, 129:812-818.
  • [12]Rajpar MH, Harley K, Laing C, Davies RM, Dixon MJ: Mutation of the gene encoding the enamel-specific protein, enamelin, causes autosomal-dominant amelogenesis imperfecta. Hum Mol Gen 2001, 10:1673-1677.
  • [13]Fukumoto S, Kiba T, Hall B, Iehara N, Nakamura T, Longenecker G, Krebsbach PH, Nanci A, Kulkarni AB, Yamada Y: Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J Cell Biol 2004, 167:973-983.
  • [14]Fukumoto S, Arakaki M, Iwamoto T, Yamada A, Miyamoto R, Naruse M, Nakamura T: Epithelial cell lines in the field of dental research: review. In Interface of Oral Health Science 2011. Edited by Sasaki K, Suzuki O, Takahashi N. New York: Springer; 2012:327-333.
  • [15]Hu JC-C, Hu Y, Smith CE, McKee MD, Wright JT, Yamakoshi Y, Papagerakis P, Hunter GK, Feng JQ, Yamakoshi F, Simmer JP: Enamel defects and ameloblast-specific expression in Enam knock-out/lacZ knock-in mice. J Biol Chem 2008, 283:10858-10871.
  • [16]Hatakeyama J, Fukumoto S, Nakamura T, Haruyama N, Suzuki S, Hatakeyama Y, Shum L, Gibson CW, Yamada Y, Kulkarni AB: Synergistic roles of amelogenin and ameloblastin. J Dent Res 2009, 88:318-322.
  • [17]Chan H-C, Estrella NMRP, Milkovich RN, Kim J-W, Simmer JP, Hu JC-C: Target gene analyses of 39 amelogenesis imperfecta kindreds. Eur J Oral Sci 2011, 119(Suppl 1):311-323.
  • [18]Al-Hashimi N, Lafont A-G, Delgado S, Kawasaki K, Sire J-Y: The enamelin genes in lizard, crocodile, and frog and the pseudogene in the chicken provide new insights on enamelin evolution in tetrapods. Mol Biol Evol 2010, 27:2078-2094.
  • [19]McGowen MR: Toward the resolution of an explosive radiation – a multilocus phylogeny of oceanic dolphins (Delphinidae). Mol Phylogenet Evol 2011, 60:345-357.
  • [20]Sire J-Y, Delgado SC, Girondot M: Hen’s teeth with enamel cap: from dream to impossibility. BMC Evol Biol 2008, 8:246. BioMed Central Full Text
  • [21]Davit-Béal T, Tucker AS, Sire J-Y: Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations. J Anat 2009, 214:477-501.
  • [22]Louchart A, Viriot L: From snout to beak: the loss of teeth in birds. Trends Ecol Evol 2011, 26:663-673.
  • [23]Joyce WG: Phylogenetic relationships of Mesozoic turtles. Bull Peabody Mus Nat Hist 2007, 48:3-102.
  • [24]Anquetin J, Barrett PM, Jones MEH, Moore-Fay S, Evans SE: A new stem turtle from the Middle Jurassic of Scotland: new insights into the evolution and palaeoecology of basal turtles. Proc Roy Soc B 2009, 276:879-886.
  • [25]Li C, Wu X-C, Rieppel O, Wang L-T, Zhao L-J: An ancestral turtle from the Late Triassic of southwestern China. Nature 2008, 456:497-501.
  • [26]Gaffney ES: The comparative osteology of the Triassic turtle Proganochelys. Bull Amer Mus Nat Hist 1990, 194:1-263.
  • [27]Girondot M, Sire J-Y: Evolution of the amelogenin gene in toothed and toothless vertebrates. Eur J Oral Sci 1998, 106(Suppl 1):501-508.
  • [28]Chiari Y, Cahais V, Galtier N, Delsuc F: Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol 2012, 10:65. BioMed Central Full Text
  • [29]Gaffney ES, Hutchison JH, Jenkins FA Jr, Meeker LJ: Modern turtle origins: the oldest cryptodire. Science 1987, 237:289-291.
  • [30]Gaffney ES, Meylan PA, Wyss A: A computer assisted analysis of the relationships of the higher categories of turtles. Cladistics 1991, 7:313-335.
  • [31]Gaffney ES, Jenkins FA Jr: The cranial morphology of Kayentachelys, an Early Jurassic cryptodire, and the early history of turtles. Acta Zool 2010, 91:335-368.
  • [32]Barley AJ, Spinks PQ, Thomson RC, Shaffer HB: Fourteen nuclear genes provide phylogenetic resolution for difficult nodes in the turtle tree of life. Mol Phylogenet Evol 2010, 55:1189-1194.
  • [33]Guillon J-M, Guéry L, Hulin V, Girondot M: A large phylogeny of turtles (Testudines) using molecular data. Contrib Zool 2012, 81:147-158.
  • [34]Crawford NG, Faircloth BC, McCormack JE, Brumfield RT, Winker K, Glenn TC: More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biol Lett 2012, 8:783-786.
  • [35]Rambaut A: Se-Al: Sequence Alignment Editor, 2.0a11. 1996. http://evolve.zoo.ox.ac.uk webcite
  • [36]Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24:1586-1591.
  • [37]Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simão TLL, Stadler T, Rabosky DL, Honeycutt RL, Flynn JJ, Ingram CM, Steiner S, Williams TL, Robinson T, Burk-Herrick A, Westerman M, Ayoub NA, Springer MS, Murphy WJ: Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammalian diversification. Science 2011, 334:521-524.
  • [38]Springer MS, Meredith RW, Gatesy J, Emerling CA, Park J, Rabosky DL, Stadler T, Steiner C, Ryder OA, Janečka JE, Fisher CA, Murphy WJ: Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a supermatrix. PLoS ONE 2012, 7:e45921.
  • [39]Shedlock AM, Edwards SC: Amniotes (Amniota). In The Timetree of Life. Edited by Hedges SB, Kumar S. Oxford: Oxford Univ Press; 2009:375-379.
  • [40]Shaffer HB: Turtles (Testudines). In The Timetree of Life. Edited by Hedges SB, Kumar S. Oxford: Oxford Univ Press; 2009:398-401.
  • [41]Pereira SL, Baker AJ: A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol Biol Evol 2006, 23:1731-1740.
  • [42]Pereira SL, Baker AJ: A molecular timescale for galliform birds accounting for uncertainty in time estimates and heterogeneity of rates of DNA substitutions across lineages and sites. Mol Phylogenet Evol 2006, 38:499-509.
  • [43]van Tuinen M: Advanced birds (Neoaves). In The Timetree of Life. Edited by Hedges SB, Kumar S. Oxford: Oxford Univ Press; 2009:419-422.
  • [44]Clarke JA: Morphology, phylogenetic taxonomy, and systematics ofIchthyornisandApatornis(Avialae: Ornithurae). Am Mus Novitat 2006, 286:1-179.
  • [45]Delsuc F, Douzery EJP: Armadillos, anteaters, and sloths (Xenarthra). In The Timetree of Life. Edited by Hedges SB, Kumar S. Oxford: Oxford Univ Press; 2009:475-478.
  • [46]Ji Q, Luo Z-X, Yuan C-X, Wible JR, Zhang J-P, Georgi JA: The earliest known eutherian mammal. Nature 2002, 416:816-822.
  • [47]Sasaki T, Takahashi K, Nikaido M, Miura S, Yasukawa Y, Okada N: First application of the SINE (short interspersed repetitive element) method to infer phylogenetic relationships in reptiles: an example from the turtle superfamily Testudinoidea. Mol Biol Evol 2004, 21:705-715.
  • [48]Sire J-Y, Davit-Béal T, Delgado S, Gu X: The origin and evolution of enamel mineralization genes. Cells Tissue Organs 2007, 186:25-48.
  • [49]Turtle Taxonomy Working Group: An annotated list of modern turtle terminal taxa with comments on areas of taxonomic instability and recent change. Chelonian Res Monogr 2007, 4:173-199.
  • [50]Sterli J, Joyce WG: The cranial anatomy of the lower Jurassic turtleKayentachelys apix. Acta Palaentol Polon 2007, 52:675-694.
  • [51]Sterli J: A new, nearly complete stem turtle from the Jurassic of South America with implications for turtle evolution. Biol Lett 2008, 4:286-289.
  • [52]Kawasaki K: The SCPP gene repertoire in bony vertebrates and graded differences in mineralized tissues. Dev Gene Evol 2009, 219:147-157.
  • [53]Tokita M, Chaeychrmsri W, Siruntawineti J: Developmental basis of toothlessness in turtles: insight into convergent evolution of vertebrate morphology. Evolution 2012.
  • [54]Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han K-L, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T: A phylogenomic study of birds reveals their evolutionary history. Science 2008, 320:1763-1768.
  • [55]Nakamura Y, Slaby I, Spahr A, Pezeshki G, Matsumoto K, Lyngstadaas SP: Ameloblastin fusion protein enhances pulpal healing and dentin formation in porcine teeth. Calcif Tissue Int 2006, 2006(78):278-284.
  • [56]Tamburstuen MV, Reseland JE, Spahr A, Brookes SJ, Kvalheim G, Slaby I, Snead ML, Lyngstadaas SP: Ameloblastin expression and putative autoregulation in mesenchymal cells suggest a role in early bone formation and repair. Bone 2011, 48:406-413.
  • [57]Turner P: Some observations on the dentition of the narwhal (Monodon monoceros). J Anat Physiol 1872, 7(Pt 1):75-79.
  • [58]Ishiyama M: Enamel structure in odontocete whales. Scanning Microsc 1987, 1:1071-1079.
  • [59]Nweeia MT, Eichmiller FC, Hauschka PV, Tyler E, Mead JG, Potter CW, Angnatsiak DP, Richard PR, Orr JR, Black SR: Vestigial tooth anatomy and tusk nomenclature forMonodon monoceros. Anat Rec 2012, 295:1006-1016.
  • [60]Zeichner-David M, Chen L-S, Hsu Z, Reyna J, Catón J, Bringas P: Amelogenin and ameloblastin show growth-factor like activity in periodontal ligament cells. Eur J Oral Sci 2006, 114(Suppl 1):244-253.
  • [61]Vymětal J, Slabý I, Spahr A, Vondrášek J, Lyngstadaas SP: Bioinformatic analysis and molecular modeling of human ameloblastin suggest a two-domain intrinsically unstructured calcium-binding protein. Eur J Oral Sci 2008, 116:124-134.
  • [62]Deutsch D, Haze-Filderman A, Blumenfeld A, Dafni L, Leiser Y, Shay B, Gruenbaum-Cohen Y, Rosenfeld E, Fermon E, Zimmermann B, Haegewald S, Bernimoulin J-P, Taylor AL: Amelogenin, a major structural protein in mineralizing enamel, is also expressed in soft tissues: brain and cells of the hematopoietic system. Eur J Oral Sci 2006, 114(Suppl 1):183-189.
  • [63]Haze A, Taylor AL, Blumenfeld A, Rosenfeld E, Leiser Y, Dafni L, Shay B, Gruenbaum-Cohen Y, Fermon E, Haegewald S, Bernimoulin J-P, Deutsch D: Amelogenin expression in long bone and cartilage cells and in bone marrow progenitor cells. Anat Rec 2007, 290:455-460.
  • [64]Delgado S, Ishiyama Y, Sire J-Y: Validation of amelogenesis imperfecta inferred from amelogenin evolution. J Dent Res 2007, 86:326-330.
  • [65]Al-Hashimi N, Sire J-Y, Delgado S: Evolutionary analysis of mammalian enamelin, the largest enamel protein, supports a crucial role for the 32-kDa peptide and reveals selective adaptation in rodents and primates. J Mol Evol 2009, 69:635-656.
  文献评价指标  
  下载次数:10次 浏览次数:19次