期刊论文详细信息
BMC Genomics
The transcriptome of lae1 mutants of Trichoderma reesei cultivated at constant growth rates reveals new targets of LAE1 function
Christian P Kubicek3  Anikó Stágel1  Melinda Paholcsek5  Anita Orosz4  Éva Fekete4  Zoltán Németh4  Razieh Karimi Aghcheh2  Levente Karaffa4  Erzsébet Fekete4 
[1] Roche Hungary Ltd., Edison u. 1, H-2040 Budaörs, Hungary;Institute of Chemical Engineering, University of Technology of Vienna, Gumpendorferstrasse 1a A-1060 Vienna, Austria;Austrian Center of Industrial Biotechnology (ACIB), Petersgasse 12, A-8010 Graz, Austria;Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;Department of Human Genetics, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
关键词: Transcriptome;    Growth rate;    LAE1;    Chemostat;    Microarray;    Trichoderma reesei;   
Others  :  1216644
DOI  :  10.1186/1471-2164-15-447
 received in 2014-03-11, accepted in 2014-06-04,  发布年份 2014
PDF
【 摘 要 】

Background

The putative methyltransferase LaeA is a global regulator that affects the expression of multiple secondary metabolite gene clusters in several fungi. In Trichoderma reesei, its ortholog LAE1 appears to predominantly regulate genes involved in increasing competitive fitness in its environment, including expression of cellulases and polysaccharide hydrolases. A drawback in all studies related to LaeA/LAE1 function so far, however, is that the respective loss-of-function and overexpressing mutants display different growth rates. Thus some of the properties attributed to LaeA/LAE1 could be simply due to changes of the growth rate.

Results

We cultivated T. reesei, a Δlae1 mutant and a lae1-overexpressing strain in chemostats on glucose at two different growth rates (0.075 and 0.020 h-1) which resemble growth rates at repressing and derepressing conditions, respectively. Under these conditions, the effect of modulating LAE1 expression was mainly visible in the Δlae1 mutant, whereas the overexpressing strain showed little differences to the parent strain. The effect on the expression of some gene categories identified earlier (polyketide synthases, heterokaryon incompatibility proteins, PTH11-receptors) was confirmed, but in addition GCN5-N-acetyltransferases, amino acid permeases and flavin monooxygenases were identified as so far unknown major targets of LAE1 action. LAE1 was also shown to interfere with the regulation of expression of several genes by the growth rate. About a tenth of the genes differentially expressed in the Δlae1 mutant under either growth condition were found to be clustered in the genome, but no specific gene group was associated with this phenomenon.

Conclusions

Our data show that – using T. reesei LAE1 as a model - the investigation of transcriptome in regulatory mutants at constant growth rates leads to new insights into the physiological roles of the respective regulator.

【 授权许可】

   
2014 Fekete et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150701202801606.pdf 591KB PDF download
Figure 2. 40KB Image download
Figure 1. 34KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Bok JW, Keller NP: LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 2004, 3:527-535.
  • [2]McDonagh A, Fedorova ND, Crabtree J, Yu Y, Kim S, Chen D, Loss O, Cairns T, Goldman G, Armstrong-James D, Haynes K, Haas H, Schrettl M, May G, Nierman WC, Bignell E: Sub-telomere directed gene expression during initiation of invasive aspergillosis. PLoS Pathog 2008, 4:e1000154.
  • [3]Perrin RM, Fedorova ND, Bok JW, Cramer RA, Wortman JR, Kim HS, Nierman WC, Keller NP: Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog 2007, 3:e50.
  • [4]Reyes-Dominguez Y, Bok JW, Berger H, Shwab EK, Basheer A, Gallmetzer A, Scazzocchio C, Keller N, Strauss J: Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Mol Microbiol 2010, 76:1376-1386.
  • [5]Patananan AN, Palmer JM, Garvey GS, Keller NP, Clarke SG: A novel automethylation reaction in the Aspergillus nidulans LaeA protein generates S-methylmethionine. J Biol Chem 2013, 2013(288):14032-14045.
  • [6]Karimi-Aghcheh R, Bok JW, Phatale PA, Smith KM, Baker SE, Lichius A, Omann M, Zeilinger S, Seiboth B, Rhee C, Keller NP, Freitag M, Kubicek CP: Functional analyses of Trichoderma reesei LAE1 reveal conserved and contrasting roles of this regulator. G3 (Bethesda) 2013, 3:369-378.
  • [7]Bok JW, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Keller NP: LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot Cell 2005, 4:1574-1582.
  • [8]Sugui JA, Pardo J, Chang YC, Müllbacher A, Zarember KA, Galvez EM, Brinster L, Zerfas P, Gallin JI, Simon MM, Kwon-Chung KJ: Role of laeA in the regulation of alb1, gliP, conidial morphology, and virulence in Aspergillus fumigatus. Eukaryot Cell 2007, 6:1552-1561.
  • [9]Hoff B, Kamerewerd J, Sigl C, Mitterbauer R, Zadra I, Kürnsteiner H, Kück U: Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum. Eukaryot Cell 2010, 9:1236-1250.
  • [10]Wiemann P, Brown DW, Kleigrewe K, Bok JW, Keller NP, Humpf HU, Tudzynski B: FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol 2010, 77:972-994.
  • [11]Jiang J, Yun Y, Liu Y, Ma Z: FgVELB is associated with vegetative differentiation, secondary metabolism and virulence in Fusarium graminearum. Fungal Genet Biol 2012, 49:653-662.
  • [12]Wu QX, Jin XJ, Draskovic M, Crews MS, Tenney K, Valeriote FA, Yao XJ, Crews P: Unraveling the numerous biosynthetic products of the marine sediment-derived fungus, Aspergillus insulicola. Phytochem Lett 2012, 5:114-117.
  • [13]Chang PK, Scharfenstein LL, Ehrlich KC, Wei Q, Bhatnagar D, Ingber BF: Effects of laeA deletion on Aspergillus flavus conidial development and hydrophobicity may contribute to loss of aflatoxin production. Fungal Biol 2012, 116:298-307.
  • [14]Kale SP, Milde L, Trapp MK, Frisvad JC, Keller NP, Bok JW: Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Fungal Genet Biol 2008, 45:1422-1429.
  • [15]Amaike S, Keller NP: Distinct roles for VeA and LaeA in development and pathogenesis of Aspergillus flavus. Eukaryot Cell 2009, 8:1051-1060.
  • [16]Seiboth B, Karimi RA, Phatale PA, Linke R, Hartl L, Sauer DG, Smith KM, Baker SE, Freitag M, Kubicek CP: The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei. Mol Microbiol 2012, 84:1150-1164.
  • [17]Karaffa L, Fekete E, Gamauf C, Szentirmai A, Kubicek CP, Seiboth B: D-Galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. Microbiol-SGM 2006, 152:1507-1514.
  • [18]Portnoy T, Margeot A, Linke R, Atanasova L, Fekete E, Sándor E, Hartl L, Karaffa L, Druzhinina IS, Seiboth B, Le Crom S, Kubicek CP: The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics 2011, 12:269. BioMed Central Full Text
  • [19]Ilyés H, Fekete E, Karaffa L, Fekete É, Sándor E, Szentirmai A, Kubicek CP: CreA-mediated carbon catabolite repression of ß-galactosidase formation in Aspergillus nidulans is growth rate dependent. FEMS Microbiol Lett 2004, 235:147-151.
  • [20]Brown A: Fed-Batch and Continuous Culture. In Fermentation: A Practical Approach. Edited by McNeil B, Harvey LM. Oxford: University Press; 1990:113-130.
  • [21]Jørgensen TR, vanKuyk PA, Poulsen BR, Ruijter GJ, Visser J, Iversen JJ: Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter. Microbiology 2007, 153:1963-1973.
  • [22]Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Güldener U, Mannhaupt G, Münsterkötter M, Mewes HW: The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 2004, 32:5539-5545.
  • [23]Coppe A, Danieli GA, Bortoluzzi S: REEF: searching REgionally Enriched Features in genomes. BMC Bioinform 2006, 7:453. BioMed Central Full Text
  • [24]Metz B, Seidl-Seiboth V, Haarmann T, Kopchinskiy A, Lorenz P, Seiboth B, Kubicek CP: Expression of biomass-degrading enzymes is a major event during conidium development in Trichoderma reesei. Eukaryot Cell 2011, 10:1527-1735.
  • [25]David H, Krogh AM, Roca C, Åkesson M, Nielsen J: CreA influences the metabolic fluxes of Aspergillus nidulans during growth on glucose and xylose. Microbiology 2005, 151:2209-2221.
  • [26]Pakula TM, Salonen K, Uusitalo J, Penttilä M: The effect of specific growth rate on protein synthesis and secretion in the filamentous fungus Trichoderma reesei. Microbiology 2005, 151:135-143.
  • [27]Rautio JJ, Smit BA, Wiebe M, Penttilä M, Saloheimo M: Transcriptional monitoring of steady state and effects of anaerobic phases in chemostat cultures of the filamentous fungus Trichoderma reesei. BMC Genomics 2006, 7:247. BioMed Central Full Text
  • [28]Arvas M, Pakula T, Smit B, Rautio J, Koivistoinen H, Jouhten P, Lindfors E, Wiebe M, Penttilä M, Saloheimo M: Correlation of gene expression and protein production rate - a system wide study. BMC Genomics 2011, 12:616. BioMed Central Full Text
  • [29]Reyes-Dominguez Y, Narendja F, Berger H, Gallmetzer A, Fernandez-Martin R, Garcia I, Scazzocchio C, Strauss J: Nucleosome positioning and histone H3 acetylation are independent processes in the Aspergillus nidulans prnD-prnB bidirectional promoter. Eukaryot Cell 2008, 7:656-663.
  • [30]Veiga T, Nijland JG, Driessen AJ, Bovenberg RA, Touw H, van den Berg MA, Pronk JT, Daran JM: Impact of velvet complex on transcriptome and penicillin G production in glucose-limited chemostat cultures of a β-lactam high-producing Penicillium chrysogenum strain. OMICS 2012, 16:320-333.
  • [31]Timmers HT, Tora L: SAGA unveiled. Trends Biochem Sci 2005, 30:7-10.
  • [32]Grunstein M: Histone acetylation in chromatin structure and transcription. Nature 1997, 389:349-352.
  • [33]Mizzen CA, Allis CD: Linking histone acetylation to transcriptional regulation. Cell Mol Life Sci 1998, 54:6-20.
  • [34]Bischof R, Fourtis L, Limbeck A, Gamauf C, Seiboth B, Kubicek CP: Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. Biotechnol Biofuels 2013, 6:127. BioMed Central Full Text
  • [35]Häkkinen M, Valkonen MJ, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, Penttilä M, Saloheimo M, Pakula TM: Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotechnol Biofuels 2014, 7:14. BioMed Central Full Text
  • [36]Ivanova C, Bååth JA, Seiboth B, Kubicek CP: Systems analysis of lactose metabolism in Trichoderma reesei identifies a lactose permease that is essential for cellulase induction. PLoS One 2013, 8:e62631.
  • [37]Soukup AA, Chiang YM, Bok JW, Reyes-Dominguez Y, Oakley BR, Wang CC, Strauss J, Keller NP: Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production. Mol Microbiol 2012, 86:314-330.
  • [38]Chang JS, Winston F: Cell-cycle perturbations suppress the slow-growth defect of spt10Δ mutants in Saccharomyces cerevisiae. G3 (Bethesda) 2013, 3:573-583.
  • [39]Bok JW, Soukup AA, Chadwick E, Chiang YM, Wang CC, Keller NP: VeA and MvlA repression of the cryptic orsellinic acid gene cluster in Aspergillus nidulans involves histone 3 acetylation. Mol Microbiol 2013, 89:963-974.
  • [40]Sophianopoulou V, Diallinas G: Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis. FEMS Microbiol Rev 1995, 16:53-75.
  • [41]Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André B: Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 2007, 27:3065-3086.
  • [42]Magasanik B, Kaiser CA: Nitrogen regulation in Saccharomyces cerevisiae. Gene 2002, 290:1-18.
  • [43]Kubicek CP: From cellulose to cellulase inducers: facts and fiction. In Proceedings of the second TRICEL symposium on Trichoderma reesei cellulases and other hydrolytic enzymes. Edited by Suominen P, Reinikainen T. Finland: Foundation of Biotechnical and Industrial Fermentation Research, Espoo; 1993:181-188.
  • [44]Takahashi H, Sun X, Hamamoto M, Yashiroda Y, Yoshida M: The SAGA histone acetyltransferase complex regulates leucine uptake through the Agp3 permease in fission yeast. J Biol Chem 2012, 287:38158-38167.
  • [45]Kaufmann I, White E, Azad A, Marguerat S, Bähler J, Proudfoot NJ: Transcriptional activation of the general amino acid permease gene per1 by the histone deacetylase Clr6 Is regulated by Oca2 kinase. Mol Cell Biol 2010, 30:3396-3410.
  • [46]Fekete E, Karaffa L, Sándor E, Bányai I, Seiboth B, Gyémánt GY, Sepsi A, Szentirmai A, Kubicek CP: The alternative D-galactose degrading pathway of Aspergillus nidulans proceeds via L-sorbose. Arch Microbiol 2004, 181:35-44.
  文献评价指标  
  下载次数:32次 浏览次数:15次