BMC Systems Biology | |
Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways | |
Francisco J Planes3  John E Beasley1  Angel Rubio3  Kaspar Valgepea2  Jon Pey3  | |
[1] Mathematical Sciences, Brunel University, John Crank 505, Kingston Lane, Uxbridge UB8 3PH, UK;Competence Centre of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia;CEIT and TECNUN, University of Navarra, Manuel de Lardizabal 15, 20018 San Sebastian, Spain | |
关键词: Mixed-integer linear programming; Metabolic pathways analysis; Systems biology; Proteomics; Gene expression; Acetate overflow; | |
Others : 1141707 DOI : 10.1186/1752-0509-7-134 |
|
received in 2013-06-20, accepted in 2013-11-27, 发布年份 2013 | |
【 摘 要 】
Background
The study of cellular metabolism in the context of high-throughput -omics data has allowed us to decipher novel mechanisms of importance in biotechnology and health. To continue with this progress, it is essential to efficiently integrate experimental data into metabolic modeling.
Results
We present here an in-silico framework to infer relevant metabolic pathways for a particular phenotype under study based on its gene/protein expression data. This framework is based on the Carbon Flux Path (CFP) approach, a mixed-integer linear program that expands classical path finding techniques by considering additional biophysical constraints. In particular, the objective function of the CFP approach is amended to account for gene/protein expression data and influence obtained paths. This approach is termed integrative Carbon Flux Path (iCFP). We show that gene/protein expression data also influences the stoichiometric balancing of CFPs, which provides a more accurate picture of active metabolic pathways. This is illustrated in both a theoretical and real scenario. Finally, we apply this approach to find novel pathways relevant in the regulation of acetate overflow metabolism in Escherichia coli. As a result, several targets which could be relevant for better understanding of the phenomenon leading to impaired acetate overflow are proposed.
Conclusions
A novel mathematical framework that determines functional pathways based on gene/protein expression data is presented and validated. We show that our approach is able to provide new insights into complex biological scenarios such as acetate overflow in Escherichia coli.
【 授权许可】
2013 Pey et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150327113649426.pdf | 875KB | download | |
Figure 5. | 41KB | Image | download |
Figure 4. | 59KB | Image | download |
Figure 3. | 47KB | Image | download |
Figure 2. | 50KB | Image | download |
Figure 1. | 67KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, Christofk HR, Wagner G, Rabinowitz JD, Asara JM, Cantley LC: Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science (New York, NY) 2010, 329:1492-1499.
- [2]Prensner JR, Chinnaiyan AM: The emergence of lncRNAs in cancer biology. Cancer Discov 2011, 1:391-407.
- [3]Cascante M, Boros LG, Comin-Anduix B, De Atauri P, Centelles JJ, Lee PW-N: Metabolic control analysis in drug discovery and disease. Nat Biotechnol 2002, 20:243-249.
- [4]Plata G, Hsiao T-L, Olszewski KL, Llinás M, Vitkup D: Reconstruction and flux-balance analysis of the plasmodium falciparum metabolic network. Mol Syst Biol 2010, 6:408.
- [5]Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, Jerby L, Micaroni M, Chaneton B, Adam J, Hedley A, Kalna G, Tomlinson IPM, Pollard PJ, Watson DG, Deberardinis RJ, Shlomi T, Ruppin E, Gottlieb E: Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 2011, 477:225-228.
- [6]Park JH, Lee SY, Kim TY, Kim HU: Application of systems biology for bioprocess development. Trends Biotechnol 2008, 26:404-412.
- [7]Patti GJ, Yanes O, Siuzdak G: Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 2012, 13:263-269.
- [8]Antoniewicz MR, Kelleher JK, Stephanopoulos G: Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 2007, 9:68-86.
- [9]Pey J, Rubio A, Theodoropoulos C, Cascante M, Planes FJ: Integrating tracer-based metabolomics data and metabolic fluxes in a linear fashion via elementary carbon modes. Metab Eng 2012, 14:344-353.
- [10]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005, 102(43):15545-15550.
- [11]Oksman-Caldentey K-M, Saito K: Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr Opin Biotechnol 2005, 16:174-179.
- [12]Schellenberger J, Park JO, Conrad TM, Palsson BØ: BiGG: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 2010, 11:213.
- [13]Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, Paley S, Rhee SY, Shearer AG, Tissier C, Walk TC, Zhang P, Karp PD: The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 2008, 36(Database issue):D623-D631.
- [14]Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012, 40(Database issue):D109-D114.
- [15]Fiehn O: Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 2002, 48:155-171.
- [16]Wiechert W, Möllney M, Petersen S, De Graaf AA: A universal framework for 13C metabolic flux analysis. Metab Eng 2001, 3:265-283.
- [17]Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS: Global analysis of protein expression in yeast. Nature 2003, 425:737-741.
- [18]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2 - ΔΔCT method. Methods 2001, 25:402-408.
- [19]Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270:467-470.
- [20]Werner T: Bioinformatics applications for pathway analysis of microarray data. Curr Opin Biotechnol 2008, 19:50-54.
- [21]Altman RB, Raychaudhuri S: Whole-genome expression analysis: challenges beyond clustering. Curr Opin Struct Biol 2001, 11:340-347.
- [22]Curtis RK, Orešič M, Vidal-Puig A: Pathways to the analysis of microarray data. Trends Biotechnol 2005, 23:429-435.
- [23]Conti A, Fabbrini F, D’Agostino P, Negri R, Greco D, Genesio R, D’Armiento M, Olla C, Paladini D, Zannini M, Nitsch L: Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy. BMC Genomics 2007, 8:268.
- [24]Ghazalpour A, Doss S, Sheth S, Ingram-Drake L, Schadt E, Lusis A, Drake T: Genomic analysis of metabolic pathway gene expression in mice. Genome Biol 2005, 6:R59.
- [25]Gamberi T, Cavalieri D, Magherini F, Mangoni ML, De Filippo C, Borro M, Gentile G, Simmaco M, Modesti A: An integrated analysis of the effects of Esculentin 1–21 on Saccharomyces cerevisiae. Biochim Biophys Acta, Proteins Proteomics 2007, 1774:688-700.
- [26]Cox J, Mann M: Is proteomics the new genomics? Cell 2007, 130:395-398.
- [27]Grosu P, Townsend JP, Hartl DL, Cavalieri D: Pathway processor: a tool for integrating whole-genome expression results into metabolic networks. Genome Res 2002, 12:1121-1126.
- [28]Mao X, Zhang Y, Xu Y: SEAS: a system for SEED-based pathway enrichment analysis. PloS one 2011, 6:e22556.
- [29]Zien A, Küffner R, Zimmer R, Lengauer T: Analysis of gene expression data with pathway scores. Proceedings International Conference on Intelligent Systems for Molecular Biology ISMB International Conference on Intelligent Systems for Molecular Biology 2000, 8:407-417.
- [30]Li C, Li X, Miao Y, Wang Q, Jiang W, Xu C, Li J, Han J, Zhang F, Gong B, Xu L: Subpathwayminer: a software package for flexible identification of pathways. Nucleic Acids Res 2009, 37(19):e131-e131.
- [31]De Figueiredo LF, Schuster S, Kaleta C, Fell DA: Can sugars be produced from fatty acids? A test case for pathway analysis tools. Bioinformatics 2008, 24(22):2615-2621.
- [32]Schuster S, Fell DA, Dandekar T: A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotech 2000, 18:326-332.
- [33]Schwartz J-M, Gaugain C, Nacher J, De Daruvar A, Kanehisa M: Observing metabolic functions at the genome scale. Genome Biol 2007, 8:R123.
- [34]Kanehisa M, Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28(1):27-30.
- [35]Rezola A, Pey J, Figueiredo LF, Podhorski A, Schuster S, Rubio A, Planes FJ: Selection of human tissue-specific elementary flux modes using gene expression data. Bioinformatics 2013, 29(16):2009-2016.
- [36]Kaleta C, De Figueiredo LF, Schuster S: Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns. Genome Res 2009, 19:1872-1883.
- [37]Wessely F, Bartl M, Guthke R, Li P, Schuster S, Kaleta C: Optimal regulatory strategies for metabolic pathways in Escherichia coli depending on protein costs. Mol Syst Biol 2011, 7:515.
- [38]Pey J, Prada J, Beasley JE, Planes FJ: Path finding methods accounting for stoichiometry in metabolic networks. Genome Biol 2011, 12:R49.
- [39]Pey J, Tobalina L, De Cisneros JP, Planes FJ: A network-based approach for predicting key enzymes explaining metabolite abundance alterations in a disease phenotype. BMC Syst Biol 2013, 7:62.
- [40]Goffard N, Weiller G: PathExpress: a web-based tool to identify relevant pathways in gene expression data. Nucleic Acids Res 2007, 35(suppl 2):W176-W181.
- [41]Antonov AV, Dietmann S, Mewes HW: KEGG spider: interpretation of genomics data in the context of the global gene metabolic network. Genome Biol 2008, 9:R179.
- [42]Faust K, Dupont P, Callut J, Van Helden J: Pathway discovery in metabolic networks by subgraph extraction. Bioinformatics 2010, 26:1211-1218.
- [43]Valgepea K, Adamberg K, Nahku R, Lahtvee PJ, Arike L, Vilu R: Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase. BMC Syst Biol 2010, 4:166.
- [44]Wolfe AJ: The acetate switch. Microbiol Mol Biol Rev 2005, 69:12-50.
- [45]Contiero J, Beatty C, Kumari S, DeSanti CL, Strohl WR, Wolfe A: Effects of mutations in acetate metabolism on high-cell-density growth of Escherichia coli. J Ind Microbiol Biotechnol 2000, 24:421-430.
- [46]Nakano K, Rischke M, Sato S, Märkl H: Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor. Appl Microbiol Biotechnol 1997, 48:597-601.
- [47]Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA: Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 2006, 72(5):3653-3661.
- [48]Shlomi T, Cabili MN, Herrgård MJ, Palsson BØ, Ruppin E: Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 2008, 26:1003-1010.
- [49]Cui X, Churchill G: Statistical tests for differential expression in cDNA microarray experiments. Genome Biol 2003, 4:210.
- [50]Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BØ: Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA 2007, 104:1777-1782.
- [51]Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 2007, 3:121.
- [52]Beasley JE, Planes FJ: Recovering metabolic pathways via optimization. Bioinformatics 2007, 23:92-98.
- [53]Keseler IM, Mackie A, Peralta-Gil M, Santos-Zavaleta A, Gama-Castro S, Bonavides-Martínez C, Fulcher C, Huerta AM, Kothari A, Krummenacker M: EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res 2013, 41:D605-D612.
- [54]Kim Y, Wang X, Zhang XS, Grigoriu S, Page R, Peti W, Wood TK: Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. Environ Microbiol 2010, 12:1105-1121.
- [55]Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu CG, Croce CM, Negrini M, et al.: A microRNA signature of hypoxia. Molecular and Cellular Biology 2007, 27(5):1859-1867.
- [56]Paalme T, Kahru A, Elken R, Vanatalu K, Tiisma K, Raivo V: The computer-controlled continuous culture of Escherichia coli with smooth change of dilution rate (A-stat). J Microbiol Methods 1995, 24:145-153.
- [57]Majewski RA, Domach MM: Simple constrained-optimization view of acetate overflow in E. coli. Biotechnol Bioeng 1990, 35:732-738.
- [58]Veit A, Polen T, Wendisch VF: Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. Appl Microbiol Biotechnol 2007, 74:406-421.
- [59]Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Paley S, Krummenacker M, Altman T, Kaipa P, Spaulding A, Pacheco J, Latendresse M, Fulcher C, Sarker M, Shearer AG, Mackie A, Paulsen I, Gunsalus RP, Karp PD: EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res 2011, 39(suppl 1):D583-D590.
- [60]Han L, Doverskog M, Enfors SO, Häggström L: Effect of glycine on the cell yield and growth rate of Escherichia coli: evidence for cell-density-dependent glycine degradation as determined by 13 C NMR spectroscopy. J Biotechnol 2002, 92:237-249.
- [61]Gschaedler A, Boudrant J: Amino acid utilization during batch and continuous cultures of Escherichia coli on a semi-synthetic medium. J Biotechnol 1994, 37:235-251.
- [62]Adamberg K, Seiman A, Vilu R: Increased biomass yield of lactococcus lactis by reduced overconsumption of amino acids and increased catalytic activities of enzymes. PloS one 2012, 7:e48223.
- [63]Valgepea K, Adamberg K, Seiman A, Vilu R: Escherichia coli achieves faster growth by increasing catalytic and translation rates of proteins. Molecular BioSystems 2013, 9:2344-2358.
- [64]Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BØ: A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011. Mol Syst Biol 2011, 7:535.
- [65]Weinert BT, Iesmantavicius V, Wagner SA, Schölz C, Gummesson B, Beli P, Nyström T, Choudhary C: Acetyl-phosphate Is a critical determinant of lysine acetylation in E. coli. Molecular cell 2013, 51:265-272.
- [66]Quackenbush J: Microarray data normalization and transformation. Nat Genet 2002, 32:496-501.
- [67]Smyth G: Limma: linear models for microarray data. In Bioinformatics and computational biology solutions using R and Bioconductor Edited by Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S. 2005, 397-420.
- [68]McCarthy DJ, Smyth GK: Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics 2009, 25:765-771.
- [69]Peart MJ, Smyth GK, Van Laar RK, Bowtell DD, Richon VM, Marks PA, Holloway AJ, Johnstone RW: Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci USA 2005, 102:3697-3702.
- [70]Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, Iscove N, Jones S, McKinney S, Emerman J, Aparicio S, Marra M, Eaves C: Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 2008, 3:109-118.
- [71]Strimmer K: fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 2008, 24:1461-1462.
- [72]Brumme ZL, Brumme CJ, Heckerman D, Korber BT, Daniels M, Carlson J, Kadie C, Bhattacharya T, Chui C, Szinger J, et al.: Evidence of differential HLA class I-mediated viral evolution in functional and accessory/regulatory genes of HIV-1. PLoS pathogens 2007, 3:e94.
- [73]Zhang X, Cal AJ, Borevitz JO: Genetic architecture of regulatory variation in Arabidopsis thaliana. Genome Res 2011, 21:725-733.