BMC Microbiology | |
Analysis of a taurine-dependent promoter in Sinorhizobium meliloti that offers tight modulation of gene expression | |
Joseph C Chen1  Zhenzhong Huang1  Sean Nicholas King1  Tuyet Thi Tran1  Ivan Thomas Gao1  Julian Albert Bustamante1  Tanisha Saini1  Jainee Christa Lewis1  Mina Mostafavi1  | |
[1] Department of Biology, San Francisco State University, San Francisco 94132, CA, USA | |
关键词: Twin arginine translocation; Essential genes; Taurine metabolism; mCherry; Beta-glucuronidase; Transcriptional regulator; Sphingomonadaceae; Rhizobia; Alphaproteobacteria; | |
Others : 1137723 DOI : 10.1186/s12866-014-0295-2 |
|
received in 2014-08-27, accepted in 2014-11-13, 发布年份 2014 | |
【 摘 要 】
Background
Genetic models have been developed in divergent branches of the class Alphaproteobacteria to help answer a wide spectrum of questions regarding bacterial physiology. For example, Sinorhizobium meliloti serves as a useful representative for investigating rhizobia-plant symbiosis and nitrogen fixation, Caulobacter crescentus for studying cell cycle regulation and organelle biogenesis, and Zymomonas mobilis for assessing the potentials of metabolic engineering and biofuel production. A tightly regulated promoter that enables titratable expression of a cloned gene in these different models is highly desirable, as it can facilitate observation of phenotypes that would otherwise be obfuscated by leaky expression.
Results
We compared the functionality of four promoter regions in S. meliloti (ParaA, PtauA, PrhaR, and PmelA) by constructing strains carrying fusions to the uidA reporter in their genomes and measuring beta-glucuronidase activities when they were induced by arabinose, taurine, rhamnose, or melibiose. PtauA was chosen for further study because it, and, to a lesser extent, PmelA, exhibited characteristics suitable for efficient modulation of gene expression. The levels of expression from PtauA depended on the concentrations of taurine, in both complex and defined media, in S. meliloti as well as C. crescentus and Z. mobilis. Moreover, our analysis indicated that TauR, TauC, and TauY are each necessary for taurine catabolism and substantiated their designated roles as a transcriptional activator, the permease component of an ABC transporter, and a major subunit of the taurine dehydrogenase, respectively. Finally, we demonstrated that PtauA can be used to deplete essential cellular factors in S. meliloti, such as the PleC histidine kinase and TatB, a component of the twin-arginine transport machinery.
Conclusions
The PtauA promoter of S. meliloti can control gene expression with a relatively inexpensive and permeable inducer, taurine, in diverse alpha-proteobacteria. Regulated expression of the same gene in different hosts can be achieved by placing both tauR and PtauA on appropriate vectors, thus facilitating inspection of conservation of gene function across species.
【 授权许可】
2014 Mostafavi et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150317164329582.pdf | 1083KB | download | |
Figure 9. | 41KB | Image | download |
Figure 8. | 23KB | Image | download |
Figure 7. | 21KB | Image | download |
Figure 6. | 39KB | Image | download |
Figure 5. | 55KB | Image | download |
Figure 4. | 20KB | Image | download |
Figure 3. | 23KB | Image | download |
Figure 2. | 47KB | Image | download |
Figure 1. | 53KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
【 参考文献 】
- [1]Lee KB, Liu CT, Anzai Y, Kim H, Aono T, Oyaizu H: The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005, 55(Pt 5):1907-1919.
- [2]Ferla MP, Thrash JC, Giovannoni SJ, Patrick WM: New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLoS One 2013, 8(12):e83383.
- [3]Ardissone S, Viollier PH: Developmental and environmental regulatory pathways in alpha-proteobacteria. Front Biosci (Landmark Ed) 2012, 17:1695-1714.
- [4]Komeili A: Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol Rev 2012, 36(1):232-255.
- [5]Vuilleumier S, Chistoserdova L, Lee MC, Bringel F, Lajus A, Zhou Y, Gourion B, Barbe V, Chang J, Cruveiller S, Dossat C, Gillett W, Gruffaz C, Haugen E, Hourcade E, Levy R, Mangenot S, Muller E, Nadalig T, Pagni M, Penny C, Peyraud R, Robinson DG, Roche D, Rouy Z, Saenampechek C, Salvignol G, Vallenet D, Wu Z, Marx CJ, et al.: Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One 2009, 4(5):e5584.
- [6]Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC: How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 2007, 5(8):619-633.
- [7]Kondorosi E, Mergaert P, Kereszt A: A paradigm for endosymbiotic life: cell differentiation of Rhizobium bacteria provoked by host plant factors. Annu Rev Microbiol 2013, 67:611-628.
- [8]Todhanakasem T, Sangsutthiseree A, Areerat K, Young GM, Thanonkeo P: Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. N Biotechnol 2014, 31(5):451-459.
- [9]Guzman LM, Belin D, Carson MJ, Beckwith J: Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 1995, 177(14):4121-4130.
- [10]Morgan-Kiss RM, Wadler C, Cronan JE Jr: Long-term and homogeneous regulation of the Escherichia coli araBAD promoter by use of a lactose transporter of relaxed specificity. Proc Natl Acad Sci USA 2002, 99(11):7373-7377.
- [11]Sibley MH, Raleigh EA: A versatile element for gene addition in bacterial chromosomes. Nucleic Acids Res 2012, 40(3):e19.
- [12]Lutz R, Bujard H: Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2regulatory elements.Nucleic Acids Res 1997, 25(6):1203–1210.
- [13]Brosius J, Erfle M, Storella J: Spacing of the −10 and −35 regions in the tac promoter. Effect on its in vivo activity. J Biol Chem 1985, 260(6):3539-3541.
- [14]Thanbichler M, Iniesta AA, Shapiro L: A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res 2007, 35(20):e137.
- [15]Meisenzahl AC, Shapiro L, Jenal U: Isolation and characterization of a xylose-dependent promoter from Caulobacter crescentus. J Bacteriol 1997, 179(3):592-600.
- [16]Stephens C, Christen B, Watanabe K, Fuchs T, Jenal U: Regulation of D-xylose metabolism in Caulobacter crescentus by a LacI-type repressor. J Bacteriol 2007, 189(24):8828-8834.
- [17]Curtis PD, Brun YV: Getting in the loop: regulation of development in Caulobacter crescentus. Microbiol Mol Biol Rev 2010, 74(1):13-41.
- [18]Barnett MJ, Fisher RF: Global gene expression in the rhizobial-legume symbiosis. Symbiosis 2006, 42(1):1-24.
- [19]Peterson TA, Russelle MP: Alfalfa and the nitrogen cycle in the Corn Belt. J Soil Water Conserv 1991, 46(3):229-235.
- [20]Graham PH, Vance CP: Legumes: importance and constraints to greater use. Plant Physiol 2003, 131(3):872-877.
- [21]Khan SR, Gaines J, Roop RM 2nd, Farrand SK: Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. Appl Environ Microbiol 2008, 74(16):5053-5062.
- [22]Pini F, Frage B, Ferri L, De Nisco NJ, Mohapatra SS, Taddei L, Fioravanti A, Dewitte F, Galardini M, Brilli M, Villeret V, Bazzicalupo M, Mengoni A, Walker GC, Becker A, Biondi EG: The DivJ, CbrA and PleC system controls DivK phosphorylation and symbiosis in Sinorhizobium meliloti. Mol Microbiol 2013, 90(1):54-71.
- [23]Poysti NJ, Loewen ED, Wang Z, Oresnik IJ: Sinorhizobium meliloti pSymB carries genes necessary for arabinose transport and catabolism. Microbiology 2007, 153(Pt 3):727-736.
- [24]Geddes BA, Oresnik IJ: Inability to catabolize galactose leads to increased ability to compete for nodule occupancy in Sinorhizobium meliloti. J Bacteriol 2012, 194(18):5044-5053.
- [25]Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AH, Poole PS, Finan TM: Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci USA 2006, 103(47):17933-17938.
- [26]Brüggemann C, Denger K, Cook AM, Ruff J: Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans. Microbiology 2004, 150(Pt 4):805-816.
- [27]Wilson JJ, Kappler U: Sulfite oxidation in Sinorhizobium meliloti. Biochim Biophys Acta 2009, 1787(12):1516-1525.
- [28]Tett AJ, Rudder SJ, Bourdes A, Karunakaran R, Poole PS: Regulatable vectors for environmental gene expression in Alphaproteobacteria. Appl Environ Microbiol 2012, 78(19):7137-7140.
- [29]Harrison CL, Crook MB, Peco G, Long SR, Griffitts JS: Employing site-specific recombination for conditional genetic analysis in Sinorhizobium meliloti. Appl Environ Microbiol 2011, 77(12):3916-3922.
- [30]Arango Pinedo C, Gage DJ: Plasmids that insert into the rhamnose utilization locus, rha: a versatile tool for genetic studies in Sinorhizobium meliloti. J Mol Microbiol Biotechnol 2009, 17(4):201-210.
- [31]Bringhurst RM, Gage DJ: An AraC-like transcriptional activator is required for induction of genes needed for alpha-galactoside utilization in Sinorhizobium meliloti. FEMS Microbiol Lett 2000, 188(1):23-27.
- [32]Gage DJ, Long SR: α-Galactoside uptake in Rhizobium meliloti: isolation and characterization of agpA, a gene encoding a periplasmic binding protein required for melibiose and raffinose utilization. J Bacteriol 1998, 180(21):5739-5748.
- [33]Schlüter JP, Reinkensmeier J, Barnett MJ, Lang C, Krol E, Giegerich R, Long SR, Becker A: Global mapping of transcription start sites and promoter motifs in the symbiotic alpha-proteobacterium Sinorhizobium meliloti 1021. BMC Genomics 2013, 14:156. BioMed Central Full Text
- [34]Bringhurst RM, Cardon ZG, Gage DJ: Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc Natl Acad Sci USA 2001, 98(8):4540-4545.
- [35]Bringhurst RM, Gage DJ: Control of inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti. J Bacteriol 2002, 184(19):5385-5392.
- [36]Arango Pinedo C, Bringhurst RM, Gage DJ: Sinorhizobium meliloti mutants lacking phosphotransferase system enzyme HPr or EIIA are altered in diverse processes, including carbon metabolism, cobalt requirements, and succinoglycan production. J Bacteriol 2008, 190(8):2947-2956.
- [37]Garcia PP, Bringhurst RM, Arango Pinedo C, Gage DJ: Characterization of a two-component regulatory system that regulates succinate-mediated catabolite repression in Sinorhizobium meliloti. J Bacteriol 2010, 192(21):5725-5735.
- [38]Becker A, Barnett MJ, Capela D, Dondrup M, Kamp PB, Krol E, Linke B, Rüberg S, Runte K, Schroeder BK, Weidner S, Yurgel SN, Batut J, Long SR, Pühler A, Goesmann A: A portal for rhizobial genomes: RhizoGATE integrates a Sinorhizobium meliloti genome annotation update with postgenome data. J Biotechnol 2009, 140(1–2):45-50.
- [39]Eichhorn E, van der Ploeg JR, Leisinger T: Deletion analysis of the Escherichia coli taurine and alkanesulfonate transport systems. J Bacteriol 2000, 182(10):2687-2695.
- [40]van der Ploeg JR, Weiss MA, Saller E, Nashimoto H, Saito N, Kertesz MA, Leisinger T: Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source. J Bacteriol 1996, 178(18):5438-5446.
- [41]Masepohl B, Fuhrer F, Klipp W: Genetic analysis of a Rhodobacter capsulatus gene region involved in utilization of taurine as a sulfur source. FEMS Microbiol Lett 2001, 205(1):105-111.
- [42]Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL: NCBI BLAST: a better web interface. Nucleic Acids Res 2008, 36(Web Server issue):W5-W9.
- [43]Wiethaus J, Schubert B, Pfander Y, Narberhaus F, Masepohl B: The GntR-like regulator TauR activates expression of taurine utilization genes in Rhodobacter capsulatus. J Bacteriol 2008, 190(2):487-493.
- [44]Seo JS, Chong H, Park HS, Yoon KO, Jung C, Kim JJ, Hong JH, Kim H, Kim JH, Kil JI, Park CJ, Oh HM, Lee JS, Jin SJ, Um HW, Lee HJ, Oh SJ, Kim JY, Kang HL, Lee SY, Lee KJ, Kang HS: The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol 2005, 23(1):63-68.
- [45]Fields AT, Navarrete CS, Zare AZ, Huang Z, Mostafavi M, Lewis JC, Rezaeihaghighi Y, Brezler BJ, Ray S, Rizzacasa AL, Barnett MJ, Long SR, Chen EJ, Chen JC: The conserved polarity factor podJ1 impacts multiple cell envelope-associated functions in Sinorhizobium meliloti. Mol Microbiol 2012, 84(5):892-920.
- [46]Pickering BS, Oresnik IJ: The twin arginine transport system appears to be essential for viability in Sinorhizobium meliloti. J Bacteriol 2010, 192(19):5173-5180.
- [47]Bastiat B, Sauviac L, Picheraux C, Rossignol M, Bruand C: Sinorhizobium meliloti sigma factors RpoE1 and RpoE4 are activated in stationary phase in response to sulfite. PLoS One 2012, 7(11):e50768.
- [48]Miller JH: Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; 1972.
- [49]Poindexter JS: Biological properties and classification of the Caulobacter group. Bacteriol Rev 1964, 28:231-295.
- [50]Ely B: Genetics of Caulobacter crescentus. Methods Enzymol 1991, 204:372-384.
- [51]Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: Current Protocols in Molecular Biology. John Wiley & Sons, New York, NY; 1998.
- [52]Goodman AE, Rogers PL, Skotnicki ML: Minimal medium for isolation of auxotrophic Zymomonas mutants. Appl Environ Microbiol 1982, 44(2):496-498.
- [53]Finan TM, Kunkel B, De Vos GF, Signer ER: Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 1986, 167(1):66-72.
- [54]Evinger M, Agabian N: Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J Bacteriol 1977, 132(1):294-301.
- [55]Swings J, De Ley J: The biology of Zymomonas. Bacteriol Rev 1977, 41(1):1-46.
- [56]Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM: Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 1982, 149(1):114-122.
- [57]Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM: Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 1995, 166(1):175-176.
- [58]Marx CJ, Lidstrom ME: Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology 2001, 147(Pt 8):2065-2075.
- [59]Quandt J, Hynes MF: Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 1993, 127(1):15-21.
- [60]Oke V, Long SR: Bacterial genes induced within the nodule during the Rhizobium-legume symbiosis. Mol Microbiol 1999, 32(4):837-849.
- [61]Griffitts JS, Long SR: A symbiotic mutant of Sinorhizobium meliloti reveals a novel genetic pathway involving succinoglycan biosynthetic functions. Mol Microbiol 2008, 67(6):1292-1306.
- [62]Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. 2nd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; 1989.
- [63]Beck S, Marlow VL, Woodall K, Doerrler WT, James EK, Ferguson GP: The Sinorhizobium meliloti MsbA2 protein is essential for the legume symbiosis. Microbiology 2008, 154(Pt 4):1258-1270.