期刊论文详细信息
BMC Neuroscience
The impact of task relevance and degree of distraction on stimulus processing
Martin J Herrmann2  Paul Pauli3  Andrea Niklaus4  Laura D Müller2  Ann-Christine Ehlis5  Stefanie C Biehl1 
[1] School of Psychology, University of Aberdeen, William Guild Building, Aberdeen AB24 3FX, UK;Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Füchsleinstraβe 15, 97080 Würzburg, Germany;Department of Psychology I, University of Würzburg, Marcusstraβe 9-11, 97070 Würzburg, Germany;Department of Human Genetics, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;Department of Psychiatry and Psychotherapy, University of Tuebingen, Osianderstraβe 24, 72076 Tuebingen, Germany
关键词: ADHD;    N170;    P100;    Cognitive control;    Working memory;    Selective attention;   
Others  :  1140042
DOI  :  10.1186/1471-2202-14-107
 received in 2013-02-18, accepted in 2013-09-30,  发布年份 2013
PDF
【 摘 要 】

Background

The impact of task relevance on event-related potential amplitudes of early visual processing was previously demonstrated. Study designs, however, differ greatly, not allowing simultaneous investigation of how both degree of distraction and task relevance influence processing variations. In our study, we combined different features of previous tasks. We used a modified 1-back task in which task relevant and task irrelevant stimuli were alternately presented. The task irrelevant stimuli could be from the same or from a different category as the task relevant stimuli, thereby producing high and low distracting task irrelevant stimuli. In addition, the paradigm comprised a passive viewing condition. Thus, our paradigm enabled us to compare the processing of task relevant stimuli, task irrelevant stimuli with differing degrees of distraction, and passively viewed stimuli. EEG data from twenty participants was collected and mean P100 and N170 amplitudes were analyzed. Furthermore, a potential connection of stimulus processing and symptoms of attention deficit hyperactivity disorder (ADHD) was investigated.

Results

Our results show a modulation of peak N170 amplitudes by task relevance. N170 amplitudes to task relevant stimuli were significantly higher than to high distracting task irrelevant or passively viewed stimuli. In addition, amplitudes to low distracting task irrelevant stimuli were significantly higher than to high distracting stimuli. N170 amplitudes to passively viewed stimuli were not significantly different from either kind of task irrelevant stimuli. Participants with more symptoms of hyperactivity and impulsivity showed decreased N170 amplitudes across all task conditions. On a behavioral level, lower N170 enhancement efficiency was significantly correlated with false alarm responses.

Conclusions

Our results point to a processing enhancement of task relevant stimuli. Unlike P100 amplitudes, N170 amplitudes were strongly influenced by enhancement and enhancement efficiency seemed to have direct behavioral consequences. These findings have potential implications for models of clinical disorders affecting selective attention, especially ADHD.

【 授权许可】

   
2013 Biehl et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324064914795.pdf 718KB PDF download
Figure 2. 111KB Image download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Gazzaley A, Cooney JW, McEvoy K, Knight RT, D'Esposito M: Top-down enhancement and suppression of the magnitude and speed of neural activity. J Cogn Neurosci 2005, 17(3):507-517.
  • [2]Bentin S, Allison T, Puce A, Perez E, McCarthy G: Electrophysiological studies of face perception in humans. J Cogn Neurosci 1996, 8(6):551-565.
  • [3]Vogel EK, Luck SJ: The visual N1 component as an index of a discrimination process. Psychophysiology 2000, 37(2):190-203.
  • [4]Mangun GR, Hillyard SA: Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. J Exp Psychol Hum Percept Perform 1991, 17(4):1057-1074.
  • [5]Hillyard SA, Anllo-Vento L: Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci USA 1998, 95(3):781-787.
  • [6]Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, Wong EC, Hinrichs H, Heinze HJ, Hillyard SA: Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci 1999, 2(4):364-369.
  • [7]Clark VP, Hillyard SA: Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential. J Cogn Neurosci 1996, 8(5):387-402.
  • [8]Cohen JD, Forman SD, Braver TS, Casey BJ, Servan-Schreiber D, Noll DC: Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Hum Brain Mapp 1994, 1(4):293-304.
  • [9]Schreppel T, Pauli P, Ellgring H, Fallgatter AJ, Herrmann MJ: The impact of prefrontal cortex for selective attention in a visual working memory task. Int J Neurosci 2008, 118(12):1673-1688.
  • [10]Rutman AM, Clapp WC, Chadick JZ, Gazzaley A: Early top-down control of visual processing predicts working memory performance. J Cogn Neurosci 2010, 22(6):1224-1234.
  • [11]Sreenivasan KK, Jha AP: Selective attention supports working memory maintenance by modulating perceptual processing of distractors. J Cogn Neurosci 2007, 19(1):32-41.
  • [12]Barcelo F, Suwazono S, Knight RT: Prefrontal modulation of visual processing in humans. Nat Neurosci 2000, 3(4):399-403.
  • [13]Pessoa L, Kastner S, Ungerleider LG: Neuroimaging studies of attention: from modulation of sensory processing to top-down control. J Neurosci 2003, 23(10):3990-3998.
  • [14]Lavie N, Hirst A, de Fockert JW, Viding E: Load theory of selective attention and cognitive control. J Exp Psychol Gen 2004, 133(3):339-354.
  • [15]Egner T, Hirsch J: Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nat Neurosci 2005, 8(12):1784-1790.
  • [16]Cohen JD, Botvinick M, Carter CS: Anterior cingulate and prefrontal cortex: Who's in control? Nat Neurosci 2000, 3(5):421-423.
  • [17]MacDonald AW, Cohen JD, Stenger VA, Carter CS: Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Sci 2000, 288(5472):1835-1838.
  • [18]Gazzaley A, Rissman J, Cooney J, Rutman A, Seibert T, Clapp W, D'Esposito M: Functional interactions between prefrontal and visual association cortex contribute to top-down modulation of visual processing. Cereb Cortex 2007, 17:I125-I135.
  • [19]Miller BT, D'Esposito M: Searching for “the top” in top-down control. Neuron 2005, 48(4):535-538.
  • [20]Jha AP, Fabian SA, Aguirre GK: The role of prefrontal cortex in resolving distractor interference. Cogn Affect Behav Neurosci 2004, 4(4):517-527.
  • [21]Gazzaley A, Nobre AC: Top-down modulation: bridging selective attention and working memory. Trends Cogn Sci 2012, 16(2):129-135.
  • [22]Polk TA, Drake RM, Jonides JJ, Smith MR, Smith EE: Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: a functional magnetic resonance imaging study of the stroop task. J Neurosci 2008, 28(51):13786-13792.
  • [23]Zanto TP, Gazzaley A: Neural suppression of irrelevant information underlies optimal working memory performance. J Neurosci 2009, 29(10):3059-3066.
  • [24]Friedman-Hill SR, Wagman MR, Gex SE, Pine DS, Leibenluft E, Ungerleider LG: What does distractibility in ADHD reveal about mechanisms for top-down attentional control? Cognit 2010, 115(1):93-103.
  • [25]Dramsdahl M, Westerhausen R, Haavik J, Hugdahl K, Plessen KJ: Cognitive control in adults with attention-deficit/hyperactivity disorder. Psychiatry Res 2011, 188(3):406-410.
  • [26]Banich MT, Burgess GC, Depue BE, Ruzic L, Bidwell LC, Hitt-Laustsen S, Du YP, Willcutt EG: The neural basis of sustained and transient attentional control in young adults with ADHD. Neuropsychologia 2009, 47(14):3095-3104.
  • [27]Spalletta G, Pasini A, Pau F, Guido G, Menghini L, Caltagirone C: Prefrontal blood flow dysregulation in drug naive ADHD children without structural abnormalities. J Neural Transm 2001, 108(10):1203-1216.
  • [28]Burgess GC, Depue BE, Ruzic L, Willcutt EG, Du YP, Banich MT: Attentional control activation relates to working memory in attention-deficit/hyperactivity disorder. Biol Psychiatry 2010, 67(7):632-640.
  • [29]Rossion B, Kung CC, Tarr MJ: Visual expertise with nonface objects leads to competition with the early perceptual processing of faces in the human occipitotemporal cortex. Proc Natl Acad Sci USA 2004, 101(40):14521-14526.
  • [30]Ranganath C, Paller KA: Frontal brain activity during episodic and semantic retrieval: Insights from event-related potentials. J Cogn Neurosci 1999, 11(6):598-609.
  • [31]Morgan HM, Klein C, Boehm SG, Shapiro KL, Linden DEJ: Working memory load for faces modulates P300, N170, and N250r. J Cogn Neurosci 2008, 20(6):989-1002.
  • [32]Cauquil AS, Edmonds GE, Taylor MJ: Is the face-sensitive N170 the only ERP not affected by selective attention? Neuroreport 2000, 11(10):2167-2171.
  • [33]Furey ML, Tanskanen T, Beauchamp MS, Avikainen S, Uutela K, Hari R, Haxby JV: Dissociation of face-selective cortical responses by attention. Proc Natl Acad Sci USA 2006, 103(4):1065-1070.
  • [34]Lueschow A, Sander T, Boehm SG, Nolte G, Trahms L, Curio G: Looking for faces: attention modulates early occipitotemporal object processing. Psychophysiology 2004, 41(3):350-360.
  • [35]Rousselet GA, Mace MJM, Thorpe SJ, Fabre-Thorpe M: Limits of event-related potential differences in tracking object processing speed. J Cogn Neurosci 2007, 19(8):1241-1258.
  • [36]Burra N, Kerzel D: Attentional capture during visual search is attenuated by target predictability: evidence from the N2pc, Pd, and topographic segmentation. Psychophysiology 2013, 50(5):422-430.
  • [37]Hilimire MR, Hickey C, Corballis PM: Target resolution in visual search involves the direct suppression of distractors: evidence from electrophysiology. Psychophysiology 2012, 49(4):504-509.
  • [38]Hickey C, Di Lollo V, McDonald JJ: Electrophysiological indices of target and distractor processing in visual search. J Cogn Neurosci 2009, 21(4):760-775.
  • [39]Melara RD, Tong YX, Rao A: Control of working memory: effects of attention training on target recognition and distractor salience in an auditory selection task. Brain Res 2012, 1430:68-77.
  • [40]Kiss M, Grubert A, Petersen A, Eimer M: Attentional capture by salient distractors during visual search is determined by temporal task demands. J Cogn Neurosci 2012, 24(3):749-759.
  • [41]Howells FM, Stein DJ, Russell VA: Perceived mental effort correlates with changes in tonic arousal during attentional tasks. Behav Brain Funct 2010, 6:39. BioMed Central Full Text
  • [42]Egner T, Gruzelier JH: Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans. Neuroreport 2001, 12(18):4155-4159.
  • [43]Egner T, Gruzelier JH: EEG biofeedback of low beta band components: frequency-specific effects on variables of attention and event-related brain potentials. Clin Neurophysiol 2004, 115(1):131-139.
  • [44]Fekete T, Pitowsky I, Grinvald A, Omer DB: Arousal increases the representational capacity of cortical tissue. J Comput Neurosci 2009, 27(2):211-227.
  • [45]Phillips PJ, Wechsler H, Huang J, Rauss P: The FERET database and evaluation procedure for face recognition algorithms. Image Vis Comput 1998, 16(5):295-306.
  • [46]Gschwendtner KM, Biehl SC, Mühlberger A, Sommer C, Kübler A, Reif A, Herrmann MJ: The relationship between valence, task difficulty, and the COMT val158met polymorphism in disengagement processes. Int J Psychophysiol 2012, 26(3):124-131.
  • [47]Kessler RC, Adler L, Ames M, Delmer O, Faraone S, Hiripi E, Howes MJ, Jin R, Secnik K, Spencer T, et al.: The World Health Organization Adult ADHD Self-Report Scale (ASRS): a short screening scale for use in the general population. Psychol Med 2005, 35(2):245-256.
  • [48]APA: Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR. Washington: American Psychiatric Association; 2000.
  • [49]Conners CK, Erhardt D, Sparrow EP: Conners’ Adult ADHD Rating Scales (CAARS). North Tonawanda: Multi-Health Systems; 1999.
  • [50]Christiansen H, Kis B, Hirsch O, Matthies S, Hebebrand J, Uekermann J, Abdel-Hamid M, Kraemer M, Wiltfang J, Graf E, et al.: German validation of the Conners Adult ADHD Rating Scales (CAARS) II: reliability, validity, diagnostic sensitivity and specificity. Eur Psychiatry 2012, 27(5):321-328.
  • [51]Christiansen H, Kis B, Hirsch O, Philipsen A, Henneck M, Panczuk A, Pietrowsky R, Hebebrand J, Schimmelmann BG: German validation of the Conners Adult ADHD Rating Scales-self-report (CAARS-S) I: factor structure and normative data. Eur Psychiatry 2011, 26(2):100-107.
  • [52]Ward MF, Wender PH, Reimherr FW: The Wender Utah Rating Scale: an aid in the retrospective diagnosis of childhood attention deficit hyperactivity disorder. Am J Psychiatry 1993, 150(6):885-890.
  • [53]Retz-Junginger P, Retz W, Blocher D, Weijers HG, Trott GE, Wender PH, Rössler M: Wender Utah Rating Scale (WURS-k) Die deutsche Kurzform zur retrospektiven erfassung des hyperkinetischen syndroms bei erwachsenen. Nervenarzt 2002, 73(9):830-838.
  • [54]Watson D, Clark LA, Tellegen A: Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol 1988, 54(6):1063-1070.
  • [55]Krohne HW, Egloff B, Kohlmann C-W, Tausch A: Untersuchung mit einer deutschen form der Positive and Negative Affect Schedule (PANAS). Diagn 1996, 42(2):139-156.
  • [56]Hautzinger M, Keller F, Kühner C: Beck Depressions-Inventar (BDI II), Revision. 2nd edition. Frankfurt/Main: Harcourt Test Services; 2006.
  • [57]Gratton G, Coles MG, Donchin E: A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 1983, 55(4):468-484.
  • [58]Rossion B, Jacques C: Does physical interstimulus variance account for early electrophysiological face sensitive responses in the human brain? Ten lessons on the N170. Neuroimage 2008, 39(4):1959-1979.
  • [59]Faul F, Erdfelder E, Lang A-G, Buchner A: G* Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007, 39(2):175-191.
  • [60]Franz VH, Loftus GR: Standard errors and confidence intervals in within-subjects designs: generalizing loftus and masson (1994) and avoiding the biases of alternative accounts. Psychon Bull Rev 2012, 19(3):395-404.
  文献评价指标  
  下载次数:16次 浏览次数:19次