期刊论文详细信息
BMC Genomics
The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies
Carroll P. Vance2  Patrick X. Zhao4  Xinbin Dai4  Jun Li4  Nick Krom4  John W. Gronwald2  Michelle A. Graham3  Maria J. Monteros4  JoAnn F. S. Lamb2  Deborah A. Samac2  S. Sam Yang1  Bruna Bucciarelli2  Fengli Fu5  Jamie A. O’Rourke3 
[1] Present Address: Monsanto Company, Molecular Breeding Technology, Chesterfield 63167, MO, USA;USDA-ARS-Plant Science Research Unit, St. Paul 55108, MN, USA;USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames 50011, IA, USA;Samuel Roberts Noble Foundation, Ardmore 73401, OK, USA;Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul 55108, MN, USA
关键词: Nodule-specific cysteine-rich peptide;    Cysteine cluster protein;    Gene expression atlas;    RNA-seq;    Illumina;    Medicago sativa;   
Others  :  1219160
DOI  :  10.1186/s12864-015-1718-7
 received in 2015-03-05, accepted in 2015-06-24,  发布年份 2015
PDF
【 摘 要 】

Background

Alfalfa (Medicago sativa L.) is the primary forage legume crop species in the United States and plays essential economic and ecological roles in agricultural systems across the country. Modern alfalfa is the result of hybridization between tetraploid M. sativa ssp. sativa and M. sativa ssp. falcata. Due to its large and complex genome, there are few genomic resources available for alfalfa improvement.

Results

A de novo transcriptome assembly from two alfalfa subspecies, M. sativa ssp. sativa (B47) and M. sativa ssp. falcata (F56) was developed using Illumina RNA-seq technology. Transcripts from roots, nitrogen-fixing root nodules, leaves, flowers, elongating stem internodes, and post-elongation stem internodes were assembled into the Medicago sativa Gene Index 1.2 (MSGI 1.2) representing 112,626 unique transcript sequences. Nodule-specific and transcripts involved in cell wall biosynthesis were identified. Statistical analyses identified 20,447 transcripts differentially expressed between the two subspecies. Pair-wise comparisons of each tissue combination identified 58,932 sequences differentially expressed in B47 and 69,143 sequences differentially expressed in F56. Comparing transcript abundance in floral tissues of B47 and F56 identified expression differences in sequences involved in anthocyanin and carotenoid synthesis, which determine flower pigmentation. Single nucleotide polymorphisms (SNPs) unique to each M. sativa subspecies (110,241) were identified.

Conclusions

The Medicago sativa Gene Index 1.2 increases the expressed sequence data available for alfalfa by ninefold and can be expanded as additional experiments are performed. The MSGI 1.2 transcriptome sequences, annotations, expression profiles, and SNPs were assembled into the Alfalfa Gene Index and Expression Database (AGED) at http://plantgrn.noble.org/AGED/, a publicly available genomic resource for alfalfa improvement and legume research.

【 授权许可】

   
2015 O’Rourke et al.

【 预 览 】
附件列表
Files Size Format View
20150715084616177.pdf 2020KB PDF download
Fig. 4. 51KB Image download
Fig. 3. 73KB Image download
Fig. 2. 58KB Image download
Fig. 1. 99KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Food and Agriculture Organization of the United Nations, Statistics Division. http://faostat. fao.org webcite
  • [2]Census Volume 1. Chapter 1: US National Level Data, Table 37 specified crops by acres harvested: 2012 and 2007. 2012.
  • [3]Bouton J. The economic benefits of forage improvement in the United States. Euphytica. 2007; 154:263-70.
  • [4]Crop values summary. 2013.
  • [5]Quiros C, Bauchan GR. The genus Medicago and the origin of the Medicago sativa complex. In: Alfalfa and Alfalfa Improvement. Hanson AA, Barnes DK, Hill RR, editors. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison; 1988: p.93-124.
  • [6]Li X, Brummer EC. Applied genetics and genomics in alfalfa breeding. Agronomy. 2012; 2:40-61.
  • [7]Han Y, Kang Y, Torres-Jerez I, Cheung F, Town CD, Zhao PX, Udvardi MK, Monteros MJ. Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis. BMC Genomics. 2011; 12:350.
  • [8]Li X, Han Y, Wei Y, Acharya A, Farmer AD, Ho J, Monteros MJ, Brummer EC. Development of an alfalfa SNP array and its use to evaluate patterns of population structure and linkage disequilibrium. PLoS One. 2014; 9:e84329.
  • [9]Li X, Wei Y, Acharya A, Jiang Q, Kang J, Brummer EC. A saturated genetic linkage map of autotetraploid alfalfa (Medicago sativa L.) developed using genotype-by-sequencing is highly syntenous with the Medicago truncatula genome. G3 (Bethesda). 2014; 4:1971-9.
  • [10]Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Wiegel D, Lohmann JU. A gene expression map of Arabidopsis thaliana development. Nat Genet. 2005; 37:501-6.
  • [11]Wang L, Xie W, Chen Y, Tang W, Yang J, Ye R, Liu L, Lin Y, Xu C, Xiao J, Zhang Q. A dynamic gene expression atlas covering the entire life cycle of rice. Plant J. 2010; 61:742-66.
  • [12]Severin A, Woody JL, Bolon YT, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE, Graham MA, Cannon SB, May GD, Vance CP, Shoemaker RC. RNA-Seq atlas of glycine max: a guide to the soybean transcriptome. BMC Plant Biol. 2010; 10:160.
  • [13]Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ, Franklin LD, He J, Xu D, May G, Stacey G. An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J. 2010; 63(1):86-99.
  • [14]O’Rourke J, Iniguez LP, Fu F, Bucciarelli B, Miller SS, Jackson SA, McClean PE, Li J, Dai X, Zhao PX, Hernandez G, Vance CP. An RNA-Seq based gene expression atlas of the common bean. BMC Genomics. 2014; 15:866.
  • [15]Benedito V, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao PX, Tang Y, Udvardi MK. A gene expression atlas of the model legume Medicago truncatula. Plant J. 2008; 55:504-13.
  • [16]Jali SS, Rosloski SM, Janakirama P, Steffen JG, Zhurov V, Berleth T, Clark RM, Grbic V. A plant-specific HUA2-like (HULK) gene family in Arabidopsis thaliana that is essential for development. Plant J. 2014; 80:242-54.
  • [17]Petricka J, Winter CM, Benfey PN. Control of Arabidopsis root development. Ann Rev Plant Biol. 2012; 63:563-90.
  • [18]Chen Z. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Ann Rev Plant Biol. 2007; 58:377-406.
  • [19]Jiang W, Liu YL, Xia EH, Gao LZ. Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants. Plant Physiol. 2013; 161:1844-61.
  • [20]Hiz M, Canher B, Niron H, Turet M. Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PLoS One. 2014; 9: Article ID e92598
  • [21]Kandoth P, Ithal N, Recknor J, Maier T, Nettleton D, Baum TJ, Mitchum MG. The soybean Rhg1 locus for resistance to the soybean cyst nematode Hederodera glycines regulates the expression of a large number of stress and defense-related genes in degernating feeding cells. Plant Physiol. 2011; 155:1960-75.
  • [22]Yang S, Xu WW, Tesfaye M, Lamb JFS, Jung HJG, Samac DA, Vance CP, Gronwald J. Single feature polymorphism discovery in the transcriptome of tetraploid alfalfa. Plant Genome. 2009; 55:224-32.
  • [23]Kaur S, Cogan NO, Pembleton LW, Shinozuka M, Savin KW, Materne M, Forster JW. Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics. 2011; 12:265-76.
  • [24]O’Rourke J, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhde-Stone C, Tu ZJ, Allan D, Gronwald JW, Vance CP. An RNA-Seq transcriptome analysis of orthophosphate deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol. 2013; 161(2):705-24.
  • [25]Franssen S, Shrestha RP, Brautigam A, Bornberg-Bauer E, Weber APM. Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genomics. 2011; 12:227-43.
  • [26]Dubey A, Farmer A, Schlueter J, Cannon SB, Abernathy B, Tutej R, Woodward J, Shah T, Mulasmanovic B, Kudapa H, Raju NL, Gothalwal R, Pande S, Xiao Y, Town CD, Singh NK, May GD, Jackson S, Varshney RK. Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L.). DNA Res. 2011; 18:153-64.
  • [27]Yates S, Swain MT, Hegarty MJ, Chernukin I, Lowe M, Allison GG, Ruttink T, Abberton MT, Jenkins G, Skot L. De novo assembly of red clover transcriptome based on RNA-Seq data provides insight into drought response, gene discovery and marker identification. BMC Genomics. 2014; 15:453.
  • [28]Yang S, Tu ZJ, Cheung F, Xu WW, Lamb JFS, Jung HJG, Vance CP, Gronwald JW. Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergene cell wall composition in stems. BMC Genomics. 2011; 12:199.
  • [29]Li X, Acharya A, Farmer AD, Crow JA, Bharti AK, Kramer RS, Wei Y, Han Y, Gou J, May GD, Monteros MJ, Brummer EC. Prevalence of single nuceotide polymorphism among 27 diverse alfalfa genotypes as assessed by transcriptome sequencing. BMC Genomics. 2012; 13:568.
  • [30]Postnikova O, Shao J, Nemchinov LG. Analysis of the alfalfa root transcriptome in response to salinity stress. Plant Cell Physiol. 2013; 54:1041-55.
  • [31]Kang H, Han Y, Torres-Jerez I, Sinharoy S, Tang Y, Monteros MJ, Udvardi MK. System responses to long-term drought and re-watering of two contrasting alfalfa varieties. Plant J. 2011; 68:871-89.
  • [32]Liu Z, Chen T, Ma L, Zhao Z, Zhao PX, Nan Z, Wang Y. Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa. PLoS One. 2013; 8: Article ID e83549
  • [33]Young N, Debelle F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof J, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KAT, Tang H, Rombauts S, Zhao PX, Zhou P, Barbe V, Bardou P, Bechner M, Bellec A, Berger A, Berges H, Bidwell S, Bisseling T, Choisne N, Couloux A, Denny R, Deshpande S, Dai X, Doyle JJ, Dudez AM, Farmer AD, Fouteau S, Franken C, Gibelin C, Gish J, Goldstein S, Gonzalez AJ, Green PJ, Hallab A, Hartog M, Hua A, Humphray SJ, Jeong DH, Jing Y, Jocker A, Kenton SM, Kim DJ, Klee K, Lai H, Lang C, Lin S, Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun JH, Najar FZ, Nicholson C, Noirot C, O’Bleness M, Paule CR, Poulain J, Prion F, Qin B, Qu C, Retzel ER, Riddle C, Sallet E, Samain S, Samson N, Sanders I, Saurat O, Scarpelli C, Schiex T, Segurens B, Severin AJ, Janine Sherrier D, Shi R, Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang BB, Wang K, Wang M, Wang X, Warfsmann J, Weissenbach J, White DD, White JD, Wiley GB, Wincker P, Xing Y, Yang L, Yao Z, Ying F, Zhai J, Zhou L, Zuber A, Denarie J, Dixon RA, May GD, Schwartz DC, Rogers J, Quetier F, Town CD, Roe B. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature. 2011; 480(7378):520-4.
  • [34]Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000; 14(408):796-815.
  • [35]Altschul S, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25:3389-402.
  • [36]Magrane M. UniProt knowledgebase: a hub of integrated protein data. Database. 2011; 2011:bar009.
  • [37]Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K, Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia G, Kelly JD, Kudrna D, Lee R, Richard MMS, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA. A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet. 2014; 46:707-13.
  • [38]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene Ontology: tool for the unification of biology. Nat Genet. 2000; 25:25-9.
  • [39]Graham M, Silverstein KAT, Cannon SB, VandenBosch KA. Computational identification and characterization of novel genes from legumes. Plant Physiol. 2004; 135:1179-97.
  • [40]Li J, Dai X, Liu T, Zhao PX. LegumeIP: an integrative database for comparative genomics and transcriptomics of model legumes. Nucleic Acids Res. 2011; 40(D1):D1221-9.
  • [41]Im Y, Smith CM, Phillippy BQ, Strand D, Kramer DM, Grunden AM, Boss WF. Increasing phosphatidylinositol (4,5)-bisphosphate biosynthesis affects basal signaling and chloroplast metabolism in Arabidopsis thaliana. Plants. 2014; 3(1):27-57.
  • [42]Boss W, Im YJ. Phosphoinositide signaling. Ann Rev Plant Biol. 2012; 63:409-29.
  • [43]Burget EG, Verma R, Molhoj M, Reiter W-D. Molecular cloning and characterization of a golgi-localized UDP-d-xylose 4-epimerase encoded by the MUR4 gene of Arabidopsis. Plant Cell. 2003; 15:523-31.
  • [44]Pennycooke J, Cheng H, Stockinger EJ. Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes. Plant Physiol. 2008; 146:1242-54.
  • [45]Zhang L, Zhao M-G, Tian Q-Y, Zhang W-H. Comparative studies on tolerance of Medicago truncatula and Medicago falcata to freezing. Planta. 2011; 234:445-57.
  • [46]Wolkers W, McCready S, Brandt WF, Lindsey GG, Hoekstra F. Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta. 2001; 1544:196-206.
  • [47]Oquist G, Hurry VM, Huner NPA. Low temperature effects on photosynthesis and correlation with freezing tolerance in spring and winter cultivars of wheat and rye. Plant Physiol. 1993; 101:245-50.
  • [48]Trischuk R, Schilling BS, Low NH, Gray GR, Gusta LV. Cold acclimation, de-acclimation and re-acclimation of spring canola, winter canola and winter wheat: The role of carbohydrates, cold-induced stress proteins and vernalization. Environ Exp Bot. 2014; 106:156-63.
  • [49]Hurry V, Malmberg G, Gardestrom P, Oquist G. Effects of a short-term shift to low temperature and of long-term cold hardening on photosynthesis and ribulose 1,5-bisphosphate carboylase/oxygenase and sucrose phosphate synthase activity in leaves of winter rye (Secale cereale L.). Plant Physiol. 1994; 106:983-90.
  • [50]Dahal K, Kane K, Gadapati W, Webb E, Savitch LV, Singh J, Sharma P, Sarhan F, Longstaffe FJ, Grodzinski B, Huner NPA. The effects of phenotypic plasticity on photosynthetic performance in winter rye, winter wheat, and Brassica napus. Plant Physiol. 2012; 144:169-88.
  • [51]Gusta L, Wisniewski M. Understanding plant cold hardiness: an opinion. Physiol Plant. 2013; 147:4-14.
  • [52]Chen W-H, Hsu C-Y, Cheng H-Y, Chang H, Chen H-H, Ger M-J. Downregulation of putative UDP-glucose: flavonoid 3-O-glucosyltransferase gene alters flower coloring in Phalaenopsis. Plant Cell Rep. 2011; 30:1007-17.
  • [53]Winkel-Shirley B. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001; 126:485-93.
  • [54]Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot. 2011; 62:2465-83.
  • [55]Zhu C, Chao B, Sanahuja G, Yuan D, Farre G, Naqvi S, Shi L, Capell T, Christou P. The regulation of carotenoid pigmentation in flowers. Arch Biochem Biophys. 2010; 504:132-41.
  • [56]Cooper R, Elliot FC. Flower pigments in diploid alfalfa. Crop Sci. 1964; 4:367-71.
  • [57]Jung H-J, Engels FM. Alfalfa stem tissues: cell wall deposition, composition, and degradability. Crop Sci. 2002; 42:524-34.
  • [58]Lamb J, Jung HJG, Sheaffer CC, Samac DA. Alfalfa leaf protein and stem cell wall polysaccharide yields under hay and biomass management systems. Crop Sci. 2007; 47:1-9.
  • [59]Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C. Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J. 2000; 22(3):223-34.
  • [60]Guo D, Chen F, Inoue K, Blount JW, Dixon RA. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell. 2001; 13(1):73-88.
  • [61]Zhao C, Craig JC, Petzold HE, Dickerman AW, Beers EP. The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl. Plant Physiol. 2005; 138:803-18.
  • [62]Zhong R, Demura T, Ye ZH. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell. 2006; 18:3158-70.
  • [63]Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimua T, Fukuda H, Demura T. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 2007; 19:1855-60.
  • [64]Hussey S, Mizrachi E, Spokevicius AV, Bossinger G, Berger DK, Myburg AA. SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biol. 2011; 11:173.
  • [65]Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, Demura T. VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell. 2010; 22(4):1249-63.
  • [66]Jensen M, Lindemose S, de Masi F, Reimer JJ, Nielsen M, Perera V, Workman CT, Turck F, Grant MR, Miundy J, Petersen M, Skriver K. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio. 2013; 3:321-7.
  • [67]Wang Y. Characetization of a novel Medicago sativa NAC transcription factor gene involved in response to drought stress. Mol Biol Rep. 2013; 40:6451-8.
  • [68]Schmutz J, Cannon SB, Schlueter S, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Battacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X-C, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA. Genome sequence of the palaeopolyploid soybean. Nature. 2010; 463:178-83.
  • [69]Lukowitz W, Nickle TC, Meinke DW, Last RL, Conklin PL, Somerville CR. Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose biosynthesis. Proc Natl Acad Sci U S A. 2001; 98(5):2262-7.
  • [70]Minic Z, Rihouey C, Do CT, Lerouge P, Jouanin L. Purification and characterization of enzymes exhibiting B-d-xylosidase activities in stem tissues of Arabidopsis. Plant Physiol. 2004; 135(2):867-78.
  • [71]Ranocha P, Denance N, Vanholme R, Freydier A, Martinez Y, Hoffmann L, Kohler L, Pouzet C, Renou J-P, Sundberg B, Boerjan W, Goffner D. Walls are thin 1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21, is a tonoplast-localized protein required for secondary wall formation in fibers. Plant J. 2010; 63(3):469-83.
  • [72]Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M. How many peas in a pod? Leume genes responsible for mutualistic symbioses underground. Plant Cell Physiol. 2010; 51:1381-97.
  • [73]Gouch C, Jacquet C. Nod factor perception protein carries weight in biotic interactions. Trends Plant Sci. 2013; 18:566-74.
  • [74]Young N, Mudge J, Ellis TH. Legume genomes: more than peas in a pod. Curr Opin Plant Biol. 2003; 6:199-204.
  • [75]Mortier V, Holsters M, Goormachtig S. Never too many? How legumes control nodule numbers. Plant Cell Environ. 2012; 35:245-58.
  • [76]Silverstein K, Moskal WA, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA. Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J. 2007; 51:262-80.
  • [77]Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaitre B, Alunni B, Bourge M, Kucho K, Abe M, Kerestz A, Maroti G, Uchiumi T, Kondorosi E, Megaert P. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science. 2010; 327:1122-6.
  • [78]Haag A, Baloban M, Sani M, Kerscher B, Pierre O, Farkas A, Lonhi R, Boncompagni E, Heruouart D, Dall’Angelo S, Kondorosi E, Zanda M, Mergaert P, Ferguson GP. Protection of Sinorhizobium against host cysteine-rich antimocrobial peptides is critical for symbiosis. PLoS Biol. 2011; 9:e1001169.
  • [79]Petersen T, Brunak S, von Heijne G, Nielsen H. SignalIP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011; 8:785-6.
  • [80]O’Leary B, Preston GM, Sweetlove LJ. Increased B-cyanoalanine nitrilase activity improves cyanide tolerance and assimilation in Arabidopsis. Mol Plant. 2014; 7(1):231-43.
  • [81]Piotrowski M, Vomer JJ. Cyanide metabolism in higher plants: cyanoalanine hydratase is a NIT4 homolog. Plant Mol Biol. 2006; 61:111-22.
  • [82]Fu Y, Knessi JY, Marzluf GA. Isolation of nit-4, the minor nitrogen regulatory gene which mediates nitrate induction in Neurospora crassa. J Bacteriol. 1989; 171:4067-70.
  • [83]Vance C. Carbon and nitrogen metabolism in legume nodules. In: Nitrogen-fixing Leguminous Symbioses. Dilworth MJ, James EK, Sprent JI, Newton WE, editors. Springer, Dordrecht, The Netherlands; 2008: p.293-320.
  • [84]Sulieman S, Fischinger SA, Gresshoff PM, Schulze J. Asparagine as a major factor in the N-feedback regulation of N 2 fixation in Medicago truncatula. Physiol Plant. 2010; 140(1):21-31.
  • [85]Groat R, Vance CP. Root nodule enzymes of ammonia assimilation in alfalfa (Medicago sativa L.). Plant Physiol. 1981; 67:1198-203.
  • [86]Riday H, Brummer EC. IAFAL-C3. Medicago sativa subsp. falcata germplasm. Iowa State University PI 644249, Iowa; 2007.
  • [87]Hoagland D, Arnon D. The water-culture method for growing plants without soil. California Agric Exp Stat Circular. 1950; 347:1-32.
  • [88]Zerbino D, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008; 18:821-9.
  • [89]Schulz M, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012; 28:1086-92.
  • [90]Huang X, Madan A. CAP3: a DNA sequence assembly program. Genome Res. 1999; 9:868-77.
  • [91]Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next generation sequencing data. Bioinformatics. 2012; 28:3150-2.
  • [92]Li W, Godzik A. CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006; 22:1658-9.
  • [93]Burke G, Strand MR. Deep sequencing identifies viral and wasp genes with potential roles in replication of Microplitis demolitor bracovirus. J Virol. 2012; 86:3293-306.
  • [94]Zhao J, Oshumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K, Song JJ, Kingston RE, Borowsky M, Lee JT. Genome-wide identification of polycomb-associated RNAs by RIP-Seq. Mol Cell. 2010; 40:939-53.
  • [95]Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan AR, Hussey SG, Pinard D, van der Merwe K, Singh P, van Jaarsveld I, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang X, Ranjan P, Tschaplinski TJ, Ye CY, Li T, Sterck L, Vanneste K, Murat F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Kulheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Van de Peer Y, Rokhsar DS, Schmutz J. The genome of Eucalyptus grandis. Nature. 2014; 510:356-62.
  • [96]Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J, Harkins T, Rokhsar DS, Rounsley S. The cassava genome: current progress, future directions. Trop Plant Biol. 2012; 5:88-94.
  • [97]Genome sequence and analysis of the tuber crop potato. Nature. 2011; 475:189-95.
  • [98]Fisher R. The design of experiments. 8th ed. London Oliver and Boyd, Edinburgh; 1966.
  • [99]Bonferroni C. III Calcolo delle assicurazioni su gruppi di teste. Studi in Onore del Professore Salvatore Ortu Carboni. 1935.13-60.
  • [100]Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10:R25.
  • [101]Mortazavi A, Williams BA, McCue K, Schaffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008; 5:621-8.
  • [102]Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008; 320:1344-9.
  • [103]Atwood S, O’Rourke JA, Peiffer GA, Yin T, Majumder M, Zhang C, Cianzio SR, Hill JH, Cook D, Whitham SA, Shoemaker RC, Graham MA. Replication protein A subunit 3 and the iron efficiency response in soybean. Plant Cell Environ. 2014; 37:213-34.
  • [104]Core L, Waterfall JJ, Lis JT. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science. 2008; 322:1845-8.
  • [105]Feng L, Liu H, Liu Y, Lu Z, Guo G, Guo S, Zheng H, Gao Y, Cheng S, Wang J, Zhang K, Zhang Y. Power of deep sequencing and agilent microarray for gene expression profiling. Mol Biotechnol. 2010; 45:101-10.
  • [106]Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: a matter of depth. Genome Res. 2011; 21:2213-23.
  文献评价指标  
  下载次数:30次 浏览次数:22次