期刊论文详细信息
BMC Evolutionary Biology
Parallel divergent adaptation along replicated altitudinal gradients in Alpine trout
Ole Seehausen1  Etienne Bezault2  Jolanda Schuler1  Irene Keller3 
[1] Department of Aquatic Ecology and Macroevolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland;Present address: Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR, 97202-8199, USA;Department of Aquatic Ecology, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
关键词: Parallel adaptation;    Environmental gradient;    AFLP;    Genome scan;    Local adaptation;    European trout;   
Others  :  1140109
DOI  :  10.1186/1471-2148-12-210
 received in 2011-12-09, accepted in 2012-10-12,  发布年份 2012
PDF
【 摘 要 】

Background

The European trout (Salmo trutta species complex) occurs across a very wide altitudinal range from lowland rivers to alpine streams. Historically, the major European river systems contained different, evolutionarily distinct trout lineages, and some of this genetic diversity has persisted in spite of extensive human-mediated translocations. We used AFLP-based genome scans to investigate the extent of potentially adaptive divergence among major drainages and along altitudinal gradients replicated in several rivers.

Results

The proportion of loci showing evidence of divergent selection was larger between drainages than along altitudinal transects within drainages. This suggests divergent selection is stronger between drainages, or adaptive divergence is constrained by gene flow among populations within drainages, although the latter could not be confirmed at a more local scale. Still, altitudinal divergence occurred and, at approximately 2% of the markers, parallel changes of the AFLP band frequencies with altitude were observed suggesting that altitude may well be an important source of divergent selection within rivers.

Conclusions

Our results indicate that adaptive genetic divergence is common both between major European river systems and along altitudinal gradients within drainages. Alpine trout appear to be a promising model system to investigate the relative roles of divergent selection and gene flow in promoting or preventing adaptation to climate gradients.

【 授权许可】

   
2012 Keller et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324093727663.pdf 1415KB PDF download
Figure 6. 38KB Image download
Figure 5. 62KB Image download
Figure 4. 45KB Image download
Figure 3. 29KB Image download
Figure 2. 31KB Image download
Figure 1. 56KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Williams GC: Adaptation and natural selection. Princeton, NJ: Princeton University Press; 1966.
  • [2]Kawecki TJ, Ebert D: Conceptual issues in local adaptation. Ecol Lett 2004, 7(12):1225-1241.
  • [3]Begon M, Townsend CA, Harper JL: Ecology: From individuals to ecosystems. 4th edition. Oxford: Wiley-Blackwell; 2005.
  • [4]Garant D, Forde SE, Hendry AP: The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct Ecol 2007, 21(3):434-443.
  • [5]Räsänen K, Hendry AP: Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification. Ecol Lett 2008, 11(6):624-636.
  • [6]Haldane JBS: The theory of a cline. J Genet 1948, 48:277-284.
  • [7]Endler JA: Gene flow and population differentiation: studies of clines suggest that differentiation along environmental gradients may be independent of gene flow. Science 1973, 179(4070):243-250.
  • [8]Slatkin M: Gene flow and selection in a cline. Genetics 1973, 75(4):733-756.
  • [9]Doebeli M, Dieckmann U: Speciation along environmental gradients. Nature 2003, 421(6920):259-264.
  • [10]Schmidt PS, Serrao EA, Pearson GA, Riginos C, Rawson PD, Hilbish TJ, Brawley SH, Trussell GC, Carrington E, Wethey DS, et al.: Ecological genetics in the North Atlantic: environmental gradients and adaptation at specific loci. Ecology 2008, 89(11):S91-S107.
  • [11]Mullen LM, Hoekstra HE: Natural selection along an environmental gradient: a classic cline in mouse pigmentation. Evolution 2008, 62(7):1555-1570.
  • [12]Grahame JW, Wilding CS, Butlin RK: Adaptation to a steep environmental gradient and an associated barrier to gene exchange in Littorina saxatilis. Evolution 2006, 60(2):268-278.
  • [13]Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HDJ, Miyagi R, van der Sluijs I, Schneider MV, Maan ME, Tachida H, et al.: Speciation through sensory drive in cichlid fish. Nature 2008, 455(7213):620-626.
  • [14]Dionne M, Miller KM, Dodson JJ, Caron F, Bernatchez L: Clinal variation in MHC diversity with temperature: evidence for the role of host-pathogen interaction on local adaptation in Atlantic salmon. Evolution 2007, 61(9):2154-2164.
  • [15]Wahli T, Bernet D, Steiner P, Schmidt-Posthaus H: Geographic distribution of Tetracapsuloides bryosalmonae infected fish in Swiss rivers: an update. Aquat Sci Res Across Boundaries 2007, 69(1):3-10.
  • [16]Marcogliese DJ: The impact of climate change on the parasites and infectious diseases of aquatic animals. Rev Sci Tech/Off int des epizooties 2008, 27(2):467-484.
  • [17]Storz JF, Nachman MW: Natural selection drives altitudinal divergence at the albumin locus in deer mice, Peromyscus maniculatus. Evolution 2004, 58:1342-1352.
  • [18]Bonin A, Taberlet P, Miaud C, Pompanon F: Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Mol Biol Evol 2006, 23(4):773-783.
  • [19]Angers B, Magnan P, Plante M, Bernatchez L: Canonical correspondence analysis for estimating spatial and environmental effects on microsatellite gene diversity in brook charr (Salvelinus fontinalis). Mol Ecol 1999, 8(6):1043-1053.
  • [20]Castric V, Bonney F, Bernatchez L: Landscape structure and hierachical genetic diversity in the brook charr, Salvelinus fontinalis. Evolution 2001, 55(5):1016-1028.
  • [21]Bernatchez L: The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 2001, 55(2):351-379.
  • [22]Kottelat M, Freyhof J: Handbook of European Freshwater Fishes. Switzerland and Freyhof, Berlin, Germany: Kottelat; 2007.
  • [23]Giuffra E, Bernatchez L, Guyomard R: Mitochondrial control region and protein coding genes sequence variation among phenotypic forms of brown trout Salmo trutta from northern Italy. Mol Ecol 1994, 3(2):161-171.
  • [24]Antunes A, Templeton AR, Guyomard R, Alexandrino P: The role of nuclear genes in intraspecific evolutionary inference: genealogy of the transferrin gene in the brown trout. Mol Biol Evol 2002, 19(8):1272-1287.
  • [25]Schweizerische Fischereiberatung (FIBER): Fischbesatz in Fliessgewässern. http://www.fischereiberatung.ch/docs/inhalt/fischbesatz_d.pdf webcite
  • [26]Bernatchez L, Guyomard R, Bonhomme F: DNA sequence variation of the mitochondrial control region among geographically and morphologically remote European brown trout Salmo trutta populations. Mol Ecol 1992, 1(3):161-173.
  • [27]Largiadèr CR, Scholl A: Effects of stocking on the genetic diversity of brown trout populations of the Adriatic and Danubian drainages in Switzerland. J Fish Biol 1995, 47(Supplement A):209-225.
  • [28]Largiadèr CR, Scholl A: Genetic introgression between native and introduced brown trout Salmo trutta L. populations in the Rhone River Basin. Mol Ecol 1996, 5:417-426.
  • [29]Keller I, Taverna A, Seehausen O: Evidence of neutral and adaptive genetic divergence between European trout populations sampled along altitudinal gradients. Mol Ecol 2011, 20(9):1888-1904.
  • [30]Beaumont MA, Balding DJ: Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 2004, 13(4):969-980.
  • [31]Storz JF: Using genome scans of DNA polymorphism to infer adaptive population divergence. Mol Ecol 2005, 14(3):671-688.
  • [32]Meier K, Hansen MM, Bekkevold D, Skaala O, Mensberg KLD: An assessment of the spatial scale of local adaptation in brown trout (Salmo trutta L.): footprints of selection at microsatellite DNA loci. Heredity 2011, 106(3):488-499.
  • [33]Gaudeul M, Taberlet P, Till-Bottraud I: Genetic diversity in an endangered alpine plant, Eryngium alpinum L. (Apiaceae), inferred from amplified fragment length polymorphism markers. Mol Ecol 2000, 9(10):1625-1637.
  • [34]Giuffra E, Guyomard R, Forneris G: Phylogenetic relationships and introgression patterns between incipient parapatric species of Italian brown trout (Salmo trutta L. complex). Mol Ecol 1996, 5:207-220.
  • [35]Hansen MM, Meier K, Mensberg K-LD: Identifying footprints of selection in stocked brown trout populations: a spatio-temporal approach. Mol Ecol 2010, 19(9):1787-1800.
  • [36]Nosil P, Crespi BJ: Does gene flow constrain adaptive divergence or vice versa? a test using ecomorphology and sexual isolation in Timema cristinae walking-sticks. Evolution 2004, 58(1):102-112.
  • [37]Rundle HD, Nagel L, Boughman JW, Schluter D: Natural selection and parallel speciation in sympatric sticklebacks. Science 2000, 287(5451):306-308.
  • [38]Nosil P, Egan SP, Funk DJ: Heterogeneous genomic differentiation between walking-stick ecotypes: "isolation by adaptation" and multiple roles for divergent selection. Evolution 2008, 62(2):316-336.
  • [39]Wilding CS, Butlin RK, Grahame J: Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J Evol Biol 2001, 14(4):611-619.
  • [40]Nosil P, Harmon LJ, Seehausen O: Ecological explanations for (incomplete) speciation. Trends Ecol Evol 2009, 24(3):145-156.
  • [41]Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, et al.: AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 1995, 23(21):4407-4414.
  • [42]Trybush S, Hanley S, Cho K-H, Jahodova S, Grimmer M, Emelianov I, Bayon C, Karp A: Getting the most out of fluorescent amplified fragment length polymorphism. Can J Bot 2006, 84(8):1347-1354.
  • [43]Minder AM, Widmer A: A population genomic analysis of species boundaries: neutral processes, adaptive divergence and introgression between two hybridizing plant species. Mol Ecol 2008, 17(6):1552-1563.
  • [44]Estoup A, Largiadèr CR, Cornuet JM, Gharbi K, Presa P, Guyomard R: Juxtaposed microsatellite systems as diagnostic markers for admixture: an empirical evaluation with brown trout (Salmo trutta) as model organism. Mol Ecol 2000, 9:1873-1886.
  • [45]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-959.
  • [46]Falush D, Stephens M, Pritchard JK: Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 2003, 164(4):1567-1587.
  • [47]Jakobsson M, Rosenberg NA: CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23(14):1801-1806.
  • [48]Rosenberg NA: distruct: a program for the graphical display of population structure. Mol Ecol Notes 2004, 4(1):137-138.
  • [49]Excoffier L, Laval G, Schneider S: Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 2005, 1:47-50.
  • [50]Foll M, Gaggiotti O: A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 2008, 180:977-993.
  • [51]Excoffier L, Hofer T, Foll M: Detecting loci under selection in a hierarchically structured population. Heredity 2009, 103:285-298.
  • [52]R Development Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2007.
  • [53]Goudet J: FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). 2001. http://www2.unil.ch/popgen/softwares/fstat.htm webcite
  文献评价指标  
  下载次数:10次 浏览次数:22次