期刊论文详细信息
BMC Genomics
Compositions of fungal secretomes indicate a greater impact of phylogenetic history than lifestyle adaptation
Stefan GR Wirsel3  Holger B Deising3  Michael R Thon2  Jorrit-Jan Krijger1 
[1] Institut für Agrar- und Ernährungswissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 3, Halle (Saale) D-06120, Germany;Centro Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca / Parque Científico, Campus de Villamayor, C/ Río Duero, 12, Villamayor (Salamanca) 37185, Spain;Interdisziplinäres Zentrum für Nutzpflanzenforschung, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 3, Halle (Saale) D-06120, Germany
关键词: Nutritional lifestyle;    Phylogeny;    Expansion;    Contraction;    Cluster;    SSCP;    SSP;    Cysteine-rich;    Secretome;    Fungi;   
Others  :  1141190
DOI  :  10.1186/1471-2164-15-722
 received in 2014-03-12, accepted in 2014-08-21,  发布年份 2014
PDF
【 摘 要 】

Background

Since the first fungal genome sequences became available, investigators have been employing comparative genomics to understand how fungi have evolved to occupy diverse ecological niches. The secretome, i.e. the entirety of all proteins secreted by an organism, is of particular importance, as by these proteins fungi acquire nutrients and communicate with their surroundings.

Results

It is generally assumed that fungi with similar nutritional lifestyles have similar secretome compositions. In this study, we test this hypothesis by annotating and comparing the soluble secretomes, defined as the sets of proteins containing classical signal peptides but lacking transmembrane domains of fungi representing a broad diversity of nutritional lifestyles. Secretome size correlates with phylogeny and to a lesser extent with lifestyle. Plant pathogens and saprophytes have larger secretomes than animal pathogens. Small secreted cysteine-rich proteins (SSCPs), which may comprise many effectors important for the interaction of plant pathogens with their hosts, are defined here to have a mature length of ≤ 300 aa residues, at least four cysteines, and a total cysteine content of ≥5%. SSCPs are found enriched in the secretomes of the Pezizomycotina and Basidiomycota in comparison to Saccharomycotina. Relative SSCP content is noticeably higher in plant pathogens than in animal pathogens, while saprophytes were in between and closer to plant pathogens. Expansions and contractions of gene families and in the number of occurrences of functional domains are largely lineage specific, e.g. contraction of glycoside hydrolases in Saccharomycotina, and are only weakly correlated with lifestyle. However, within a given lifestyle a few general trends exist, such as the expansion of secreted family M14 metallopeptidases and chitin-binding proteins in plant pathogenic Pezizomycotina.

Conclusions

While the secretomes of fungi with similar lifestyles share certain characteristics, the expansion and contraction of gene families is largely lineage specific, and not shared among all fungi of a given lifestyle.

【 授权许可】

   
2014 Krijger et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150326025022146.pdf 1682KB PDF download
Figure 5. 162KB Image download
Figure 4. 152KB Image download
Figure 3. 76KB Image download
Figure 2. 119KB Image download
Figure 1. 76KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Yi M, Valent B: Communication between filamentous pathogens and plants at the biotrophic interface. Annu Rev Phytopathol 2013, 51:587-611.
  • [2]Thomma BP, Nürnberger T, Joosten MH: Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 2011, 23:4-15.
  • [3]Stuart LM, Paquette N, Boyer L: Effector-triggered versus pattern-triggered immunity: how animals sense pathogens. Nat Rev Immunol 2013, 13:199-206.
  • [4]Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, Osorio S, Tohge T, Fernie AR, Feussner I, Feussner K, Meinicke P, Stierhof YD, Schwarz H, Macek B, Mann M, Kahmann R: Metabolic priming by a secreted fungal effector. Nature 2011, 478:395-398.
  • [5]Newman MA, Sundelin T, Nielsen JT, Erbs G: MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 2013, 4:139.
  • [6]Kumar H, Kawai T, Akira S: Pathogen recognition by the innate immune system. Int Rev Immunol 2011, 30:16-34.
  • [7]El Gueddari NE, Rauchhaus U, Moerschbacher BM, Deising HB: Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant pathogenic fungi. New Phytol 2002, 156:103-112.
  • [8]Wan J, Zhang XC, Stacey G: Chitin signaling and plant disease resistance. Plant Signal Behav 2008, 3:831-833.
  • [9]Van den Burg HA, Harrison SJ, Joosten MHAJ, Vervoort J, De Wit PJGM: Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol Plant Microbe Interact 2006, 19:1420-1430.
  • [10]Shoji JY, Arioka M, Kitamoto K: Dissecting cellular components of the secretory pathway in filamentous fungi: insights into their application for protein production. Biotechnol Lett 2008, 30:7-14.
  • [11]Ruiz-May E, Kim SJ, Brandizzi F, Rose JK: The secreted plant N-glycoproteome and associated secretory pathways. Front Plant Sci 2012, 3:117.
  • [12]Roth J, Zuber C, Park S, Jang I, Lee Y, Kysela KG, Le Fourn V, Santimaria R, Guhl B, Cho JW: Protein N-glycosylation, protein folding, and protein quality control. Mol Cells 2010, 30:497-506.
  • [13]Reynders E, Foulquier F, Annaert W, Matthijs G: How Golgi glycosylation meets and needs trafficking: the case of the COG complex. Glycobiology 2011, 21:853-863.
  • [14]Pattison RJ, Amtmann A: N-glycan production in the endoplasmic reticulum of plants. Trends Plant Sci 2009, 14:92-99.
  • [15]Dell A, Galadari A, Sastre F, Hitchen P: Similarities and differences in the glycosylation mechanisms in prokaryotes and eukaryotes. Int J Microbiol 2010, 2010:148178.
  • [16]Krijger J-J, Horbach R, Behr M, Schweizer P, Deising HB, Wirsel SGR: The yeast signal sequence trap identifies secreted proteins of the hemibiotrophic corn pathogen Colletotrichum graminicola. Mol Plant Microbe Interact 2008, 21:1325-1336.
  • [17]Brunak S, Bendtsen JD, Nielsen H, Von Heijne G: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004, 340:783-795.
  • [18]Emanuelsson O, Nielsen H, Brunak S, Von Heijne G: Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 2000, 300:1005-1016.
  • [19]Käll L, Krogh A, Sonnhammer ELL: Advantages of combined transmembrane topology and signal peptide prediction - the Phobius web server. Nucleic Acids Res 2007, 35:W429-W432.
  • [20]Soanes DM, Alam I, Cornell M, Wong HM, Hedeler C, Paton NW, Rattray M, Hubbard SJ, Oliver SG, Talbot NJ: Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS One 2008, 3:e2300.
  • [21]Ma LJ, Ibrahim AS, Skory C, Grabherr MG, Burger G, Butler M, Elias M, Idnurm A, Lang BF, Sone T, Abe A, Calvo SE, Corrochano LM, Engels R, Fu J, Hansberg W, Kim JM, Kodira CD, Koehrsen MJ, Liu B, Miranda-Saavedra D, O'Leary S, Ortiz-Castellanos L, Poulter R, Rodriguez-Romero J, Ruiz-Herrera J, Shen YQ, Zeng Q, Galagan J, Birren BW: Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet 2009, 5:e1000549.
  • [22]Klee EW, Ellis LBM: Evaluating eukaryotic secreted protein prediction. BMC Bioinformatics 2005, 6:256. BioMed Central Full Text
  • [23]Käll L, Krogh A, Sonnhammer ELL: An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics 2005, 21:I251-I257.
  • [24]Haas BJ, Kamoun S, Zody MC, Jiang RH, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AM, Alvarado L, Anderson VL, Armstrong MR, Avrova A, Baxter L, Beynon J, Boevink PC, Bollmann SR, Bos JI, Bulone V, Cai G, Cakir C, Carrington JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N: Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 2009, 461:393-398.
  • [25]Hacquard S, Joly DL, Lin YC, Tisserant E, Feau N, Delaruelle C, Legue V, Kohler A, Tanguay P, Petre B, Frey P, Van de Peer Y, Rouze P, Martin F, Hamelin RC, Duplessis S: A comprehensive analysis of genes encoding small secreted proteins identifies candidate effectors in Melampsora larici-populina (poplar leaf rust). Mol Plant Microbe Interact 2012, 25:279-293.
  • [26]Wulff BBH, Chakrabarti A, Jones DA: Recognitional specificity and evolution in the tomato-Cladosporium fulvum pathosystem. Mol Plant Microbe Interact 2009, 22:1191-1202.
  • [27]Kamoun S: A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 2006, 44:41-60.
  • [28]Enright AJ, Van Dongen S, Ouzounis CA: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 2002, 30:1575-1584.
  • [29]Arvas M, Kivioja T, Mitchell A, Saloheimo M, Ussery D, Penttila M, Oliver S: Comparison of protein coding gene contents of the fungal phyla Pezizomycotina and Saccharomycotina. BMC Genomics 2007, 8:325. BioMed Central Full Text
  • [30]Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF: InterPro: the integrative protein signature database. Nucleic Acids Res 2009, 37:D211-215.
  • [31]Christis C, Lubsen NH, Braakman I: Protein folding includes oligomerization - examples from the endoplasmic reticulum and cytosol. FEBS J 2008, 275:4700-4727.
  • [32]Kulkarni RD, Kelkar HS, Dean RA: An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem Sci 2003, 28:118-121.
  • [33]Joly DL, Feau N, Tanguay P, Hamelin RC: Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (Melampsora spp.). BMC Genomics 2010, 11:422. BioMed Central Full Text
  • [34]Sharpton TJ, Stajich JE, Rounsley SD, Gardner MJ, Wortman JR, Jordar VS, Maiti R, Kodira CD, Neafsey DE, Zeng Q, Hung CY, McMahan C, Muszewska A, Grynberg M, Mandel MA, Kellner EM, Barker BM, Galgiani JN, Orbach MJ, Kirkland TN, Cole GT, Henn MR, Birren BW, Taylor JW: Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res 2009, 19:1722-1731.
  • [35]Moran GP, Coleman DC, Sullivan DJ: Comparative genomics and the evolution of pathogenicity in human pathogenic fungi. Eukaryot Cell 2011, 10:34-42.
  • [36]Stassen JH, Van den Ackerveken G: How do oomycete effectors interfere with plant life? Curr Opin Plant Biol 2011, 14:407-414.
  • [37]Stergiopoulos I, De Wit PJ: Fungal effector proteins. Annu Rev Phytopathol 2009, 47:233-263.
  • [38]Linder MB, Szilvay GR, Nakari-Setala T, Penttila ME: Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 2005, 29:877-896.
  • [39]Marx F, Binder U, Leiter E, Pocsi I: The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies. Cell Mol Life Sci 2008, 65:445-454.
  • [40]Ciuffetti LM, Manning VA, Pandelova I, Betts MF, Martinez JP: Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis-wheat interaction. New Phytol 2010, 187:911-919.
  • [41]Duplessis S, Cuomo CA, Lin YC, Aerts A, Tisserant E, Veneault-Fourrey C, Joly DL, Hacquard S, Amselem J, Cantarel BL, Chiu R, Coutinho PM, Feau N, Field M, Frey P, Gelhaye E, Goldberg J, Grabherr MG, Kodira CD, Kohler A, Kues U, Lindquist EA, Lucas SM, Mago R, Mauceli E, Morin E, Murat C, Pangilinan JL, Park R, Pearson M: Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci USA 2011, 108:9166-9171.
  • [42]Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares CP: Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 2001, 414:450-453.
  • [43]Hernandez-Ortega A, Ferreira P, Martinez AT: Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol 2012, 93:1395-1410.
  • [44]Heller J, Tudzynski P: Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Annu Rev Phytopathol 2011, 49:369-390.
  • [45]Sygmund C, Klausberger M, Felice AK, Ludwig R: Reduction of quinones and phenoxy radicals by extracellular glucose dehydrogenase from Glomerella cingulata suggests a role in plant pathogenicity. Microbiology 2011, 157:3203-3212.
  • [46]Stukenbrock EH, McDonald BA: Population genetics of fungal and oomycete effectors involved in gene-for-gene interactions. Mol Plant Microbe Interact 2009, 22:371.
  • [47]Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stuber K, Ver Loren vanThemaat E, Brown JK, Butcher SA, Gurr SJ, Lebrun MH, Ridout CJ, Schulze-Lefert P, Talbot NJ, Ahmadinejad N, Ametz C, Barton GR, Benjdia M, Bidzinski P, Bindschedler LV, Both M, Brewer MT, Cadle-Davidson L, Cadle-Davidson MM, Collemare J, Cramer R, Frenkel O, Godfrey D, Harriman J, Hoede C: Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 2010, 330:1543-1546.
  • [48]James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O'Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüssler A, Longcore JE, O'Donnell K, Mozley-Standridge S: Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 2006, 443:818-822.
  • [49]Heitman J: Microbial pathogens in the fungal kingdom. Fungal Biol Rev 2011, 25:48-60.
  • [50]Spatafora JW, Sung GH, Sung JM, Hywel-Jones NL, White JF Jr: Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol 2007, 16:1701-1711.
  • [51]Andrew M, Barua R, Short SM, Kohn LM: Evidence for a common toolbox based on necrotrophy in a fungal lineage spanning necrotrophs, biotrophs, endophytes, host generalists and specialists. PLoS One 2012, 7:e29943.
  • [52]Rosenblum EB, Stajich JE, Maddox N, Eisen MB: Global gene expression profiles for life stages of the deadly amphibian pathogen Batrachochytrium dendrobatidis. Proc Natl Acad Sci USA 2008, 105:17034-17039.
  • [53]Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R: InterProScan: protein domains identifier. Nucleic Acids Res 2005, 33:W116-W120.
  • [54]Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A: UniProtKB/Swiss-Prot. Methods Mol Biol 2007, 406:89-112.
  • [55]Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y: dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2012, 40:W445-451.
  • [56]Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL: BLAST plus: architecture and applications. BMC Bioinformatics 2009, 10:421. BioMed Central Full Text
  • [57]Saldanha AJ: Java Treeview - extensible visualization of microarray data. Bioinformatics 2004, 20:3246-3248.
  • [58]De Hoon MJL, Imoto S, Nolan J, Miyano S: Open source clustering software. Bioinformatics 2004, 20:1453-1454.
  文献评价指标  
  下载次数:60次 浏览次数:25次