期刊论文详细信息
BMC Systems Biology
Multistate Model Builder (MSMB): a flexible editor for compact biochemical models
Clifford A Shaffer4  John J Tyson3  Thomas C Jones Jr4  Layne T Watson2  Stefan Hoops1  Alida Palmisano3 
[1] Virginia Bioinformatics Institute, 1015 Life Science Circle, Blacksburg, VA 24061, USA;Department of Mathematics, Virginia Polytechnic and State University, 225 Stanger Street, Blacksburg, VA 24061, USA;Department of Biological Sciences, Virginia Polytechnic and State University, 1405 Perry Street, Blacksburg, VA 24061, USA;Department of Computer Science, Virginia Polytechnic and State University, 2202 Kraft Drive, Blacksburg, VA 24060, USA
关键词: Multistate;    Model editor;    Software;    SBML;    COPASI;    Chemical reaction systems;    Mathematical modeling;    Biological networks;    Systems biology;   
Others  :  866568
DOI  :  10.1186/1752-0509-8-42
 received in 2013-12-18, accepted in 2014-03-28,  发布年份 2014
PDF
【 摘 要 】

Background

Building models of molecular regulatory networks is challenging not just because of the intrinsic difficulty of describing complex biological processes. Writing a model is a creative effort that calls for more flexibility and interactive support than offered by many of today’s biochemical model editors. Our model editor MSMB — Multistate Model Builder — supports multistate models created using different modeling styles.

Results

MSMB provides two separate advances on existing network model editors. (1) A simple but powerful syntax is used to describe multistate species. This reduces the number of reactions needed to represent certain molecular systems, thereby reducing the complexity of model creation. (2) Extensive feedback is given during all stages of the model creation process on the existing state of the model. Users may activate error notifications of varying stringency on the fly, and use these messages as a guide toward a consistent, syntactically correct model. MSMB default values and behavior during model manipulation (e.g., when renaming or deleting an element) can be adapted to suit the modeler, thus supporting creativity rather than interfering with it. MSMB’s internal model representation allows saving a model with errors and inconsistencies (e.g., an undefined function argument; a syntactically malformed reaction). A consistent model can be exported to SBML or COPASI formats. We show the effectiveness of MSMB’s multistate syntax through models of the cell cycle and mRNA transcription.

Conclusions

Using multistate reactions reduces the number of reactions need to encode many biochemical network models. This reduces the cognitive load for a given model, thereby making it easier for modelers to build more complex models. The many interactive editing support features provided by MSMB make it easier for modelers to create syntactically valid models, thus speeding model creation. Complete information and the installation package can be found at http://www.copasi.org/SoftwareProjects webcite. MSMB is based on Java and the COPASI API.

【 授权许可】

   
2014 Palmisano et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727075052873.pdf 1650KB PDF download
132KB Image download
74KB Image download
59KB Image download
90KB Image download
65KB Image download
79KB Image download
91KB Image download
107KB Image download
【 图 表 】

【 参考文献 】
  • [1]Wikipedia: Editing – Wikipedia, The Free Encyclopedia. 2013. [http://en.wikipedia.org/w/index.php?title=Editing&oldid=579124220 webcite]. [Online; accessed October 2013]
  • [2]Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U: COPASI a COmplex PAthway SImulator. Bioinformatics 2006, 22:3067-3074.
  • [3]Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N, Kitano H: Celldesigner 3.5: a versatile modeling tool for biochemical networks. Proc IEEE 2008, 96(8):1254-1265.
  • [4]Moraru II, Schaff JC, Slepchenko BM, Blinov M, Morgan F, Lakshminarayana A, Gao F, Li Y, Loew LM: Virtual cell modelling and simulation software environment. Syst Biol 2008, IET 2(5):352-362.
  • [5]Smith LP, Bergmann FT, Chandran D, Sauro HM: Antimony: a modular model definition language. Bioinformatics 2009, 25(18):2452-2454.
  • [6]Hlavacek WS, Faeder JR, Blinov ML, Posner RG, Hucka M, Fontana W: Rules for modeling signal-transduction systems. Science’s STKE 2006, 2006(344):6.
  • [7]Blinov ML, Faeder JR, Goldstein B, Hlavacek WS: Bionetgen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 2004, 20(17):3289-3291.
  • [8]Smith AM, Xu W, Sun Y, Faeder JR, Marai GE: Rulebender: integrated modeling, simulation and visualization for rule-based intracellular biochemistry. BMC Bioinformatics 2012, 13(Suppl 8):3. BioMed Central Full Text
  • [9]Zhang F, Angermann BR, Meier-Schellersheim M: The Simmune Modeler visual interface for creating signaling networks based on bi-molecular interactions. Bioinformatics 2013, 29(9):1229-1230.
  • [10]Barik D, Baumann WT, Paul MR, Novak B, Tyson JJ: A model of yeast cell-cycle regulation based on multisite phosphorylation. Mol Syst Biol 2010, 6(1):article number 405.
  • [11]Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C: BioModels Database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol 2010, 4:92. BioMed Central Full Text
  • [12]Kapuy O, Barik D, Domingo Sananes MR, Tyson JJ, Novák B: Bistability by multiple phosphorylation of regulatory proteins. Prog Biophys Mol Biol 2009, 100(1):47-56.
  • [13]Firczuk H, Kannambath S, Pahle J, Claydon A, Beynon R, Duncan J, Westerhoff H, Mendes P, McCarthy JE: An in vivo control map for the eukaryotic mrna translation machinery. Mol Syst Biol 2013, 9(1):article number 635.
  文献评价指标  
  下载次数:98次 浏览次数:26次