期刊论文详细信息
BMC Neuroscience
Cellular elements for seeing in the dark: voltage-dependent conductances in cockroach photoreceptors
Matti Weckström1  Mikko Vähäsöyrinki1  Yani Krause1  Stephan Krause1  Roman Frolov1  Esa-Ville Immonen1  Iikka Salmela1 
[1] Department of Physics, University of Oulu, Oulu, Finland
关键词: Photoreceptor;    Sensory neuron;    Potassium channel;   
Others  :  1170587
DOI  :  10.1186/1471-2202-13-93
 received in 2012-04-03, accepted in 2012-07-12,  发布年份 2012
PDF
【 摘 要 】

Background

The importance of voltage-dependent conductances in sensory information processing is well-established in insect photoreceptors. Here we present the characterization of electrical properties in photoreceptors of the cockroach (Periplaneta americana), a nocturnal insect with a visual system adapted for dim light.

Results

Whole-cell patch-clamped photoreceptors had high capacitances and input resistances, indicating large photosensitive rhabdomeres suitable for efficient photon capture and amplification of small photocurrents at low light levels. Two voltage-dependent potassium conductances were found in the photoreceptors: a delayed rectifier type (KDR) and a fast transient inactivating type (KA). Activation of KDR occurred during physiological voltage responses induced by light stimulation, whereas KA was nearly fully inactivated already at the dark resting potential. In addition, hyperpolarization of photoreceptors activated a small-amplitude inward-rectifying (IR) current mediated at least partially by chloride. Computer simulations showed that KDR shapes light responses by opposing the light-induced depolarization and speeding up the membrane time constant, whereas KA and IR have a negligible role in the majority of cells. However, larger KA conductances were found in smaller and rapidly adapting photoreceptors, where KA could have a functional role.

Conclusions

The relative expression of KA and KDR in cockroach photoreceptors was opposite to the previously hypothesized framework for dark-active insects, necessitating further comparative work on the conductances. In general, the varying deployment of stereotypical K+ conductances in insect photoreceptors highlights their functional flexibility in neural coding.

【 授权许可】

   
2012 Salmela et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150417022228859.pdf 976KB PDF download
Figure 10. 37KB Image download
Figure 9. 46KB Image download
Figure 8. 28KB Image download
Figure 7. 24KB Image download
Figure 6. 33KB Image download
Figure 5. 20KB Image download
Figure 4. 24KB Image download
Figure 3. 38KB Image download
Figure 2. 43KB Image download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Laughlin SB: Matched filtering by a photoreceptor membrane. Vision Res 1996, 36(11):1529-1541.
  • [2]Niven JE, Laughlin SB: Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 2008, 211(11):1792.
  • [3]Niven JE, Vähäsöyrinki M, Kauranen M, Hardie RC, Juusola M, Weckström M: The contribution of Shaker K+ channels to the information capacity of Drosophila photoreceptors. Nature 2003, 421(6923):630-634.
  • [4]Niven JE, Vähäsöyrinki M, Juusola M: Shaker K+-channels are predicted to reduce the metabolic cost of neural information in Drosophila photoreceptors. Proc R Soc Lond B Biol Sci 2003, 270(Suppl 1):S58-S61.
  • [5]Barrow AJ, Wu SM: Low-conductance HCN1 ion channels augment the frequency response of rod and cone photoreceptors. J Neurosci 2009, 29(18):5841.
  • [6]Beech DJ, Barnes S: Characterization of a voltage-gated K channel that accelerates the rod response to dim light. Neuron 1989, 3(5):573-581.
  • [7]Barnes S: After transduction: response shaping and control of transmission by ion channels of the photoreceptor inner segments. Neuroscience 1994, 58(3):447-459.
  • [8]Hardie RC, Raghu P: Visual transduction in Drosophila. Nature 2001, 413(6852):186-193.
  • [9]Fain GL, Hardie R, Laughlin SB: Phototransduction and the evolution of photoreceptors. Curr Biol 2010, 20(3):R114-R124.
  • [10]Laughlin SB, Weckström M: Fast and Slow Photoreceptors - a Comparative-Study of the Functional Diversity of Coding and Conductances in the Diptera. J Comp Physiol A 1993, 172(5):593-609.
  • [11]Weckström M, Laughlin SB: Visual Ecology and Voltage-Gated Ion Channels in Insect Photoreceptors. Trends Neurosci 1995, 18(1):17-21.
  • [12]Weckström M, Hardie RC, Laughlin SB: Voltage-activated potassium channels in blowfly photoreceptors and their role in light adaptation. J Physiol (Lond ) 1991, 440(1):635.
  • [13]Vähäsöyrinki M, Niven JE, Hardie RC, Weckström M, Juusola M: Robustness of neural coding in Drosophila photoreceptors in the absence of slow delayed rectifier K+ channels. J Neurosci 2006, 26(10):2652-2660.
  • [14]Krause Y, Krause S, Huang J, Liu CH, Hardie RC, Weckström M: Light-dependent modulation of shab channels via phosphoinositide depletion in Drosophila photoreceptors. Neuron 2008, 59(4):596-607.
  • [15]Hardie RC: Voltage-sensitive potassium channels in Drosophila photoreceptors. J Neurosci 1991, 11(10):3079-3095.
  • [16]Bell WJ, Adiyodi KG: The American Cockroach. Springer; 1982.
  • [17]Zill SN: Mechanoreceptors: Exteroceptors and proprioceptors. In Cockroaches as models for neurobiology: applications in biomedical research. Edited by Huber I, Masler EP, Rao BR. Boca Raton, Florida: CRC Press, Inc; 1990:247-267.
  • [18]Seelinger G: Chemoreception. In Cockroaches as models for neurobiology: applications in biomedical research. Edited by Huber I, Masler EP, Rao BR. Boca Raton, Florida: CRC Press, Inc; 1990:269-284.
  • [19]Brown S, Strausfeld N: The effect of age on a visual learning task in the American cockroach. Learn Mem 2009, 16(3):210.
  • [20]Mizunami M, Weibrecht JM, Strausfeld NJ: Mushroom bodies of the cockroach: their participation in place memory. J Comp Neurol 1998, 402(4):520-537.
  • [21]Ye S, Leung V, Khan A, Baba Y, Comer CM: The antennal system and cockroach evasive behavior. I. Roles for visual and mechanosensory cues in the response. J Comp Physiol A 2003, 189(2):89-96.
  • [22]Füller H, Eckert M, Blechschmidt K: Distribution of GABA-like immunoreactive neurons in the optic lobes of Periplaneta americana. Cell Tissue Res 1989, 255(1):225-233.
  • [23]Laughlin SB: Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol 2001, 11(4):475-480.
  • [24]Laughlin SB, van Steveninck RR dR, Anderson JC: The metabolic cost of neural information. Nat Neurosci 1998, 1(1):36-41.
  • [25]Warrant EJ, Dacke M: Vision and Visual Navigation in Nocturnal Insects. Annu Rev Entomol 2011, 56(1):239-254.
  • [26]Weckström M, Järvilehto M, Heimonen K: Spike-like potentials in the axons of nonspiking photoreceptors. J Neurophysiol 1993, 69(1):293-296.
  • [27]Heimonen K, Salmela I, Kontiokari P, Weckström M: Large functional variability in cockroach photoreceptors: optimization to low light levels. J Neurosci 2006, 26(52):13454-13462.
  • [28]van Hateren JH: Processing of natural time series of intensities by the visual system of the blowfly. Vision Res 1997, 37(23):3407-3416.
  • [29]Li WC, Soffe S, Roberts A: A direct comparison of whole cell patch and sharp electrodes by simultaneous recording from single spinal neurons in frog tadpoles. J Neurophysiol 2004, 92(1):380-386.
  • [30]Butler R: The identification and mapping of spectral cell types in the retina of Periplaneta americana. J Comp Physiol A 1971, 72(1):67-80.
  • [31]Smakman JGJ, Stavenga DG: Angular Sensitivity of Blowfly Photoreceptors - Broadening by Artificial Electrical Coupling. J Comp Physiol A 1987, 160(4):501-507.
  • [32]Hille B: Ion channels of excitable membranes. Sunderland, MA: Sinauer Associates; 2001.
  • [33]Wicher D, Walther C, Wicher C: Non-synaptic ion channels in insects–basic properties of currents and their modulation in neurons and skeletal muscles. Prog Neurobiol 2001, 64(5):431-525.
  • [34]Schafer S, Rosenboom H, Menzel R: Ionic currents of Kenyon cells from the mushroom body of the honeybee. J Neurosci 1994, 14(8):4600-4612.
  • [35]Harvey AL: Twenty years of dendrotoxins. Toxicon 2001, 39(1):15-26.
  • [36]Rose U, Derst C, Wanischeck M, Marinc C, Walther C: Properties and possible function of a hyperpolarisation-activated chloride current in Drosophila. J Exp Biol 2007, 210(14):2489.
  • [37]Niven JE, Vahasöyrinki M, Juusola M, French AS: Interactions between light-induced currents, voltage-gated currents, and input signal properties in Drosophila photoreceptors. J Neurophysiol 2004, 91(6):2696-2706.
  • [38]Lillywhite PG, Laughlin SB: Transducer noise in a photoreceptor. Nature 1979, 277(5697):569-572.
  • [39]Laughlin S, Blest AD, Stowe S: The sensitivity of receptors in the posterior median eye of the nocturnal spider, Dinopis. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 1980, 141(1):53-65.
  • [40]Frederiksen R, Wcislo WT, Warrant EJ: Visual reliability and information rate in the retina of a nocturnal bee. Curr Biol 2008, 18(5):349-353.
  • [41]Greiner B, Ribi WA, Warrant EJ: A neural network to improve dim-light vision? Dendritic fields of first-order interneurons in the nocturnal bee Megalopta genalis. Cell Tissue Res 2005, 322(2):313-320.
  • [42]Theobald JC, Greiner B, Wcislo WT, Warrant EJ: Visual summation in night-flying sweat bees: a theoretical study. Vision Res 2006, 46(14):2298-2309.
  • [43]Klaus A, Warrant EJ: Optimum spatiotemporal receptive fields for vision in dim light. J Vis 2009., 9(4)
  • [44]Gonzalez-Bellido PT, Wardill TJ, Juusola M: Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands. Proc Natl Acad Sci USA 2011, 108(10):4224.
  • [45]Niven JE, Anderson JC, Laughlin SB: Fly photoreceptors demonstrate energy-information trade-offs in neural coding. PLoS Biol 2007, 5(4):e116.
  • [46]Snyder AW: Physics of vision in compound eyes. In Handbook of sensory physiology. Edited by Autrum H. Berlin, Germany: Springer; 1979:225-313.
  • [47]Cuttle MF, Hevers W, Laughlin SB, Hardie RC: Diurnal modulation of photoreceptor potassium conductance in the locust. J Comp Physiol A 1995, 176(3):307-316.
  • [48]Hevers W, Hardie RC: Serotonin modulates the voltage dependence of delayed rectifier and Shaker potassium channels in Drosophila photoreceptors. Neuron 1995, 14(4):845-856.
  • [49]Jansonius NM: Properties of the sodium pump in the blowfly photoreceptor cell. J Comp Physiol A 1990, 167(4):461-467.
  • [50]Anderson J, Hardie RC: Different photoreceptors within the same retina express unique combinations of potassium channels. J Comp Physiol A 1996, 178(4):513-522.
  • [51]Butler R: The anatomy of the compound eye of Periplaneta americana L. 2. Fine structure. J Comp Physiol A 1973, 83(3):239-262.
  • [52]Connor J, Stevens C: Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol (Lond ) 1971, 213(1):21.
  • [53]Uusitalo RO, Weckström M: Potentiation in the first visual synapse of the fly compound eye. J Neurophysiol 2000, 83(4):2103-2112.
  • [54]Enz R, Ross BJ, Cutting GR: Expression of the voltage-gated chloride channel ClC-2 in rod bipolar cells of the rat retina. J Neurosci 1999, 19(22):9841.
  • [55]Ugarte G, Delgado R, O’Day PM, Farjah F, Cid LP, Vergara C, Bacigalupo J: Putative ClC-2 chloride channel mediates inward rectification in Drosophila retinal photoreceptors. J Membr Biol 2005, 207(3):151-160.
  • [56]Yamada WM, Koch C, Adams PR: Multiple channels and calcium dynamics. In Methods in neuronal modeling: From synapses to networks. 2nd edition. Edited by Koch C, Segev I. Cambridge, MA: MIT Press; 1998.
  文献评价指标  
  下载次数:31次 浏览次数:12次