期刊论文详细信息
BMC Genetics
Association study of 15q14 and 15q25 with high myopia in the Han Chinese population
Yongyong Shi4  Jue Ji3  Zujia Wen3  Jiawei Shen3  Shengying Qin3  Xiangtian Zhou1  Jia Qu1  Zhijian Song3  Jianhua Chen2  Zhiqiang Li3  Kuanjun He3  Qingzhong Wang3  Wenjin Li3  Yu Qiang3 
[1] Wenzhou Medical College, Wenzhou 325003, P.R China;Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R China;Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R China;Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai 200042, P.R China
关键词: Correlation Analysis;    Single nucleotide polymorphism;    Refractive errors;    High myopia;    RASGRF1 gene;   
Others  :  866526
DOI  :  10.1186/1471-2156-15-51
 received in 2013-10-23, accepted in 2014-04-01,  发布年份 2014
PDF
【 摘 要 】

Background

Refractive errors and high myopia are the most common ocular disorders, and both of them are leading causes of blindness in the world. Recently, genetic association studies in European and Japanese population identified that common genetic variations located in 15q14 and 15q25 were associated with high myopia. To validate whether the same variations conferred risk to high myopia in the Han Chinese population, we genotyped 1,461 individuals (940 controls and 521 cases samples) recruited of Han Chinese origin.

Result

We found rs8027411 in 15q25 (P = 0.012 after correction, OR = 0.78) was significantly associated with high myopia but rs634990 in 15q14 (P = 0.54 after correction), OR = 0.88) was not.

Conclusions

Our findings supported that 15q25 is a susceptibility locus for high myopia, and gene RASGRF1 was possible to play a role in the pathology of high myopia.

【 授权许可】

   
2014 Qiang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727074413322.pdf 160KB PDF download
6KB Image download
【 图 表 】

【 参考文献 】
  • [1]Shi Y, Qu J, Zhang D, Zhao P, Zhang Q, Tam PO, Sun L, Zuo X, Zhou X, Xiao X, Hu J, Li Y, Cai L, Liu X, Lu F, Liao S, Chen B, He F, Gong B, Lin H, Ma S, Cheng J, Zhang J, Chen Y, Zhao F, Yang X, Chen Y, Yang C, Lam DS, Li X, et al.: Genetic variants at 13q12.12 are associated with high myopia in the Han Chinese population. Am J Hum Genet 2011, 88(6):805-813.
  • [2]He M, Zheng Y, Xiang F: Prevalence of myopia in urban and rural children in mainland China. Optom Vis Sci 2009, 86(1):40-44.
  • [3]Hayashi H, Yamashiro K, Nakanishi H, Nakata I, Kurashige Y, Tsujikawa A, Moriyama M, Ohno-Matsui K, Mochizuki M, Ozaki M, Yamada R, Matsuda F, Yoshimura N: Association of 15q14 and 15q25 with high myopia in Japanese. Invest Ophthalmol Vis Sci 2011, 52(7):4853-4858.
  • [4]Bar Dayan Y, Levin A, Morad Y, Grotto I, Ben-David R, Goldberg A, Onn E, Avni I, Levi Y, Benyamini OG: The changing prevalence of myopia in young adults: a 13-year series of population-based prevalence surveys. Invest Ophthalmol Vis Sci 2005, 46(8):2760-2765.
  • [5]Kempen JH, Mitchell P, Lee KE, Tielsch JM, Broman AT, Taylor HR, Ikram MK, Congdon NG, O'Colmain BJ, Eye Diseases Prevalence Research G: The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. Arch Ophthal 2004, 122(4):495-505.
  • [6]Nishizaki R, Ota M, Inoko H, Meguro A, Shiota T, Okada E, Mok J, Oka A, Ohno S, Mizuki N: New susceptibility locus for high myopia is linked to the uromodulin-like 1 (UMODL1) gene region on chromosome 21q22.3. Eye 2009, 23(1):222-229.
  • [7]Saw SM, Gazzard G, Shih-Yen EC, Chua WH: Myopia and associated pathological complications. Ophthalmic Physiol Opt 2005, 25(5):381-391.
  • [8]Wong TY, Foster PJ, Johnson GJ, Seah SK: Education, socioeconomic status, and ocular dimensions in Chinese adults: the Tanjong Pagar Survey. Br J Ophthalmol 2002, 86(9):963-968.
  • [9]Lyhne N, Sjolie AK, Kyvik KO, Green A: The importance of genes and environment for ocular refraction and its determiners: a population based study among 20-45 year old twins. Br J Ophthalmol 2001, 85(12):1470-1476.
  • [10]Hysi PG, Young TL, Mackey DA, Andrew T, Fernandez-Medarde A, Solouki AM, Hewitt AW, Macgregor S, Vingerling JR, Li YJ, Ikram MK, Fai LY, Sham PC, Manyes L, Porteros A, Lopes MC, Carbonaro F, Fahy SJ, Martin NG, Duijn CM, Spector TD, Rahi JS, Santos E, Klaver CC, Hammond CJ: A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25. Nat Genet 2010, 42(10):902-905.
  • [11]Solouki AM, Verhoeven VJ, van Duijn CM, Verkerk AJ, Ikram MK, Hysi PG, Despriet DD, van Koolwijk LM, Ho L, Ramdas WD, Czudowska M, Kuijpers RW, Amin N, Struchalin M, Aulchenko YS, Rij G, Riemslag FC, Young TL, Mackey DA, Spector TD, Gorgels TG, Willemse-Assink JJ, Isaacs A, Kramer R, Swagemakers SM, Bergen AA, Oosterhout AA, Oostra BA, Rivadeneira F, Uitterlinden AG, et al.: A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14. Nat genetics 2010, 42(10):897-901.
  • [12]Hammond CJ, Andrew T, Mak YT, Spector TD: A susceptibility locus for myopia in the normal population is linked to the PAX6 gene region on chromosome 11: a genomewide scan of dizygotic twins. Am J Hum Genet 2004, 75(2):294-304.
  • [13]Young TL, Ronan SM, Alvear AB, Wildenberg SC, Oetting WS, Atwood LD, Wilkin DJ, King RA: A second locus for familial high myopia maps to chromosome 12q. Am J Hum Genet 1998, 63(5):1419-1424.
  • [14]Paluru P, Ronan SM, Heon E, Devoto M, Wildenberg SC, Scavello G, Holleschau A, Makitie O, Cole WG, King RA, Czudowska M, Kuijpers RW, Amin N, Struchalin M, Aulchenko YS, Rij G, Riemslag FC, Young TL, Mackey DA, Spector TD, Gorgels TG, Willemse-Assink JJ, Isaacs A, Kramer R, Swagemakers SM, Bergen AA, Oosterhout AA, Oostra BA, Rivadeneira F, Uitterlinden AF, et al.: New locus for autosomal dominant high myopia maps to the long arm of chromosome 17. Invest Ophthalmol Vis Sci 2003, 44(5):1830-1836.
  • [15]Tonini R, Mancinelli E, Balestrini M, Mazzanti M, Martegani E, Ferroni A, Sturani E, Zippel R: Expression of Ras-GRF in the SK-N-BE neuroblastoma accelerates retinoic-acid-induced neuronal differentiation and increases the functional expression of the IRK1 potassium channel. Eur J Neurosci 1999, 11(3):959-966.
  • [16]Mattingly RR, Macara IG: Phosphorylation-dependent activation of the Ras-GRF/CDC25Mm exchange factor by muscarinic receptors and G-protein beta gamma subunits. Nature 1996, 382(6588):268-272.
  • [17]Brambilla R, Gnesutta N, Minichiello L, White G, Roylance AJ, Herron CE, Ramsey M, Wolfer DP, Cestari V, Rossi-Arnaud C, Grant SG, Chapman PF, Lipp HP, Sturani E, Klein R: A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature 1997, 390(6657):281-286.
  • [18]Deans MR, Volgyi B, Goodenough DA, Bloomfield SA, Paul DL: Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 2002, 36(4):703-712.
  • [19]Fernandez-Medarde A, Barhoum R, Riquelme R, Porteros A, Nunez A, de Luis A, de Las RJ, de la Villa P, Varela-Nieto I, Santos E: RasGRF1 disruption causes retinal photoreception defects and associated transcriptomic alterations. J Neurochem 2009, 110(2):641-652.
  • [20]Verhoeven VJ, Hysi PG, Wojciechowski R, Fan Q, Guggenheim JA, Höhn R, MacGregor S, Hewitt AW, Nag A, Cheng C-Y: Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat Genet 2013, 45(3):314-318.
  文献评价指标  
  下载次数:11次 浏览次数:30次